Variational Supertrees for Bayesian Phylogenetics

被引:0
作者
Karcher, Michael D. [1 ,4 ]
Zhang, Cheng [2 ,3 ]
Matsen IV, Frederic A. [4 ]
机构
[1] Muhlenberg Coll, Dept Math & CS, 2400 W Chew St, Allentown, PA 18104 USA
[2] Peking Univ, Sch Math Sci & China, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr Stat Sci, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[4] Fred Hutchinson Canc Res Ctr, Computat Biol Program, 1100 Fairview Ave N, Seattle, WA 98109 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Supertrees; Variational methods; Phylogenetics; Gradient descent; Divide-and-conquer; SPECIES TREES; INFERENCE;
D O I
10.1007/s11538-024-01338-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bayesian phylogenetic inference is powerful but computationally intensive. Researchers may find themselves with two phylogenetic posteriors on overlapping data sets and may wish to approximate a combined result without having to re-run potentially expensive Markov chains on the combined data set. This raises the question: given overlapping subsets of a set of taxa (e.g. species or virus samples), and given posterior distributions on phylogenetic tree topologies for each of these taxon sets, how can we optimize a probability distribution on phylogenetic tree topologies for the entire taxon set? In this paper we develop a variational approach to this problem and demonstrate its effectiveness. Specifically, we develop an algorithm to find a suitable support of the variational tree topology distribution on the entire taxon set, as well as a gradient-descent algorithm to minimize the divergence from the restrictions of the variational distribution to each of the given per-subset probability distributions, in an effort to approximate the posterior distribution on the entire taxon set.
引用
收藏
页数:32
相关论文
共 23 条
  • [1] The evolution of supertrees
    Bininda-Emonds, ORP
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2004, 19 (06) : 315 - 322
  • [2] Phylogenetic Inference via Sequential Monte Carlo
    Bouchard-Cote, Alexandre
    Sankararaman, Sriram
    Jordan, Michael I.
    [J]. SYSTEMATIC BIOLOGY, 2012, 61 (04) : 579 - 593
  • [3] Bryant D., 2001, Computational Biology. First International Conference on Biology, Informatics, and Mathematics, JOBIM 2000. Selected Papers (Lecture Notes in Computer Science Vol.2066), P24
  • [4] A Bayesian Supertree Model for Genome-Wide Species Tree Reconstruction
    De Oliveira Martins, Leonardo
    Mallo, Diego
    Posada, David
    [J]. SYSTEMATIC BIOLOGY, 2016, 65 (03) : 397 - 416
  • [5] BEAST: Bayesian evolutionary analysis by sampling trees
    Drummond, Alexei J.
    Rambaut, Andrew
    [J]. BMC EVOLUTIONARY BIOLOGY, 2007, 7 (1)
  • [6] Felsenstein J., 1986, The Newick tree format
  • [7] HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.1093/biomet/57.1.97
  • [8] Bayesian Inference of Species Trees from Multilocus Data
    Heled, Joseph
    Drummond, Alexei J.
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2010, 27 (03) : 570 - 580
  • [9] Guided Tree Topology Proposals for Bayesian Phylogenetic Inference
    Hohna, Sebastian
    Drummond, Alexei J.
    [J]. SYSTEMATIC BIOLOGY, 2012, 61 (01) : 1 - 11
  • [10] Disk-covering, a fast-converging method for phylogenetic tree reconstruction
    Huson, DH
    Nettles, SM
    Warnow, TJ
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) : 369 - 386