Dynamic analysis of the fractional-order logistic equation with two different delays

被引:1
|
作者
El-Saka, H. A. A. [1 ]
El-Sherbeny, D. El. A. [1 ]
El-Sayed, A. M. A. [2 ]
机构
[1] Damietta Univ, Fac Sci, Math Dept, New Damietta 34517, Egypt
[2] Alexandria Univ, Fac Sci, Alexandria 21526, Egypt
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 06期
关键词
Fractional-order logistic equation; Time delays; Stability analysis; Hopf bifurcation; Numerical solutions; 92-10; NUMERICAL-SOLUTION; STABILITY;
D O I
10.1007/s40314-024-02877-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the stability and Hopf bifurcation of the fractional-order logistic equation with two different delays tau(1), tau(2) > 0: D-alpha y ( t ) = py(t - tau(1)) (1 - y ( t - tau(2))), t > 0, p > 0. We describe stability regions by using critical curves. We explore how the fractional order alpha, p, and time delays influence the stability and Hopf bifurcation of the model. Then, by choosing p, fractional order alpha, and time delays as bifurcation parameters, the existence of Hopf bifurcation is studied. An Adams-type predictor-corrector method is extended to solve fractional-order differential equations involving two different delays. Finally, numerical simulations are given to illustrate the effectiveness and feasibility of theoretical results.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On the Fractional-Order Logistic Equation with Two Different Delays
    El-Sayed, Ahmed M. A.
    El-Saka, Hala A. A.
    El-Maghrabi, Esam M.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (3-4): : 223 - 227
  • [2] Numerical Studies for Fractional-Order Logistic Differential Equation with Two Different Delays
    Sweilam, N. H.
    Khader, M. M.
    Mahdy, A. M. S.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [3] On the fractional-order logistic equation
    El-Sayed, A. M. A.
    El-Mesiry, A. E. M.
    El-Saka, H. A. A.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (07) : 817 - 823
  • [4] Dynamic Properties of the Fractional-Order Logistic Equation of Complex Variables
    El-Sayed, A. M. A.
    Ahmed, E.
    El-Saka, H. A. A.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [5] Bifurcation analysis for a fractional-order chemotherapy model with two different delays
    Xu, Changjin
    Li, Peiluan
    Liao, Maoxin
    Yuan, Shuai
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (03) : 1053 - 1083
  • [6] Stability Analysis of Fractional-order Differential Equation with Time Delay and Applications in Fractional Logistic Equation
    Zhang, Hongwei
    Jin, Niu
    Hu, Qingying
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 879 - 881
  • [7] A Fractional Spline Collocation Method for the Fractional-order Logistic Equation
    Pitolli, Francesca
    Pezza, Laura
    APPROXIMATION THEORY XV, 2017, 201 : 307 - 318
  • [8] Stability and bifurcation analysis for a fractional-order cancer model with two delays
    Wang, Jinbin
    Liu, Jiankang
    Zhang, Rui
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [9] Hopf bifurcation in a fractional-order generalized Logistic model with double delays
    Yang, Xiaoting
    Yuan, Liguo
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 856 - 860
  • [10] Bifurcation analysis of a fractional-order eco-epidemiological system with two delays
    Zeng, Jingjing
    Chen, Xingzhi
    Wei, Lixiang
    Li, Dong
    NONLINEAR DYNAMICS, 2024, 112 (24) : 22505 - 22527