SOLUTIONS OF GROSS-PITAEVSKII EQUATION WITH PERIODIC POTENTIAL IN DIMENSION THREE

被引:1
作者
Karpeshina, YU. [1 ]
Kim, Seonguk [2 ]
Shterenberg, R. [2 ]
机构
[1] Univ Alabama Birmingham, Dept Math, Campbell Hall,1300 Univ Blvd, Birmingham, AL 35294 USA
[2] Defiance Coll, Div Nat Sci Appl Sci & Math, Defiance, OH 43512 USA
关键词
Bose-Einstein condensate; quasiperiodic solution; quasimomentum; plane wave;
D O I
10.1090/spmj/1798
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quasiperiodic solutions of the Gross-Pitaevskii equation with a periodic potential in dimension three are studied. It is proved that there is an extensive "nonresonant" set G subset of R-3 such that for every k(->) is an element of G there is a solution asymptotically close to a plane wave Ae(i) (k(->), x(->)) as |k(->)| -> infinity, given A is sufficiently small.
引用
收藏
页码:153 / 169
页数:17
相关论文
共 10 条
[1]  
[Anonymous], 1965, Principles of the theory of solids
[2]  
Karpeshina Y. E., 1997, LECT NOTES MATH, V1663
[3]  
Karpeshina Yu. E., 2020, OPER THEORY ADV APPL, V276, P401
[4]  
Kittel Charles, 1976, INTRO SOLID STATE PH
[5]   Modulational instability in Bose-Einstein condensates in optical lattices [J].
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2002, 65 (02) :1-4
[6]   Bose-Einstein condensates in optical lattices: Band-gap structure and solitons [J].
Louis, PJY ;
Ostrovskaya, EA ;
Savage, CM ;
Kivshar, YS .
PHYSICAL REVIEW A, 2003, 67 (01) :9
[7]  
Madelung O., 1978, Introduction to solid-state theory
[8]  
Pethick CJ, 2008, BOSE-EINSTEIN CONDENSATION IN DILUTE GASES, P1
[9]   Superfluidity breakdown of periodic matter waves in quasi-one-dimensional annular traps via resonant scattering with moving defects [J].
Yulin, A. V. ;
Bludov, Yu. V. ;
Konotop, V. V. ;
Kuzmiak, V. ;
Salerno, M. .
PHYSICAL REVIEW A, 2013, 87 (03)
[10]   Out-of-gap Bose-Einstein solitons in optical lattices [J].
Yulin, AV ;
Skryabin, DV .
PHYSICAL REVIEW A, 2003, 67 (02) :8