Invisibility enables super-visibility in electromagnetic imaging

被引:0
作者
He, Youzi [1 ]
Li, Hongjie [2 ,3 ]
Liu, Hongyu [4 ]
Wang, Xianchao [5 ]
机构
[1] Shenzhen MSUBIT Univ, Fac Computat Math & Cybernet, Shenzhen 518172, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
[3] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
[4] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[5] Harbin Inst Technol, Sch Math, Harbin, Peoples R China
关键词
Inverse electromagnetic scattering; anisotropic media; transmission eigenfunctions; geometric structures; super-resolution; TRANSMISSION EIGENFUNCTIONS; LAPLACIAN EIGENFUNCTIONS; SCATTERING; CORNERS;
D O I
10.1051/m2an/2024003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the inverse electromagnetic scattering problem for anisotropic media. We use the interior resonant modes to develop an inverse scattering scheme for imaging the scatterer. The whole procedure consists of three phases. First, we determine the interior Maxwell transmission eigenvalues of the scatterer from a family of far-field data by the mechanism of the linear sampling method. Next, we determine the corresponding transmission eigenfunctions by solving a constrained optimization problem. Finally, based on both global and local geometric properties of the transmission eigenfunctions, we design an imaging functional which can be used to determine the shape of the medium scatterer. We provide rigorous theoretical basis for our method. Numerical experiments verify the effectiveness, better accuracy and super-resolution results of the proposed scheme.
引用
收藏
页码:545 / 569
页数:25
相关论文
共 43 条
[1]   ELLIPTIC REGULARITY THEORY APPLIED TO TIME HARMONIC ANISOTROPIC MAXWELL'S EQUATIONS WITH LESS THAN LIPSCHITZ COMPLEX COEFFICIENTS [J].
Alberti, Giovanni S. ;
Capdeboscq, Yves .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) :998-1016
[2]  
Ammari H, 2013, LECT NOTES MATH, V2098, P1, DOI 10.1007/978-3-319-02585-8
[3]   On vanishing and localizing of transmission eigenfunctions near singular points: a numerical study [J].
Blasten, Eemeli ;
Li, Xiaofei ;
Liu, Hongyu ;
Wang, Yuliang .
INVERSE PROBLEMS, 2017, 33 (10)
[4]   NONRADIATING SOURCES AND TRANSMISSION EIGENFUNCTIONS VANISH AT CORNERS AND EDGES [J].
Blasten, Eemeli .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (06) :6255-6270
[5]   On vanishing near corners of transmission eigenfunctions [J].
Blasten, Eemeli ;
Liu, Hongyu .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (11) :3616-3632
[6]   ON AN ELECTROMAGNETIC PROBLEM IN A CORNER AND ITS APPLICATIONS [J].
Blasten, Emilia ;
Liu, Hongyu ;
Xiao, Jingni .
ANALYSIS & PDE, 2021, 14 (07) :2207-2224
[7]   SCATTERING BY CURVATURES, RADIATIONLESS SOURCES, TRANSMISSION EIGENFUNCTIONS, AND INVERSE SCATTERING PROBLEMS [J].
Blasten, Emilia L. K. ;
Liu, Hongyu .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (04) :3801-3837
[8]   On Corners Scattering Stably and Stable Shape Determination by a Single Far-Field Pattern [J].
Blasten, Emilia L. K. ;
Liu, Hongyu .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (03) :907-947
[9]   On traces for H(curl, Ω) in Lipschitz domains [J].
Buffa, A ;
Costabel, M ;
Sheen, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (02) :845-867
[10]   The electromagnetic inverse-scattering problem for partly coated Lipschitz domains [J].
Cakoni, F ;
Colton, D ;
Monk, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :661-682