Finite element discretization of semilinear acoustic wave equations with kinetic boundary conditions

被引:0
作者
Hochbruck M. [1 ]
Leibold J. [1 ]
机构
[1] Karlsruhe Institute of Technology, Institute for Applied and Numerical Mathematics, Englerstraße 2, Karlsruhe
来源
Electronic Transactions on Numerical Analysis | 2020年 / 53卷
关键词
A-priori error bounds; Dynamic boundary conditions; Error analysis; Isoparametric finite elements; Nonconforming space discretization; Operator semigroups; Semilinear evolution equations; Wave equation;
D O I
10.1553/ETNA_VOL53S522
中图分类号
学科分类号
摘要
We consider isoparametric finite element discretizations of semilinear acoustic wave equations with kinetic boundary conditions and derive a corresponding error bound as our main result. The difficulty is that such problems are stated on domains with curved boundaries and this renders the discretizations nonconforming. Our approach is to provide a unified error analysis for nonconforming space discretizations for semilinear wave equations. In particular, we introduce a general, abstract framework for nonconforming space discretizations in which we derive a-priori error bounds in terms of interpolation, data, and conformity errors. The theory applies to a large class of problems and discretizations that fit into the abstract framework. The error bound for wave equations with kinetic boundary conditions is obtained from the general theory by inserting known interpolation and geometric error bounds into the abstract error result of the unified error analysis. Copyright © 2020, Kent State University.
引用
收藏
页码:522 / 540
页数:18
相关论文
共 17 条
[1]  
ADAMS R. A., FOURNIER J. J. F., Sobolev Spaces, (2003)
[2]  
ALZETTA G., ARNDT D., BANGERTH W., BODDU V., BRANDS B., DAVYDOV D., GASSMOELLER R., HEISTER T., HELTAI L., KORMANN K., KRONBICHLER M., MAIER M., PELTERET J.-P., TURCKSIN B., WELLS D., The deal.II library, version 9.0, J. Numer. Math, 26, pp. 173-183, (2018)
[3]  
BANGERTH W., HARTMANN R., KANSCHAT G., deal.II – a general purpose object oriented finite element library, ACM Trans. Math. Software, 33, (2007)
[4]  
ELLIOTT C. M., RANNER T., Finite element analysis for a coupled bulk-surface partial differential equation, IMA J. Numer. Anal, 33, pp. 377-402, (2013)
[5]  
GOLDBERG H., KAMPOWSKY W., TROLTZSCH F., On Nemytskij operators in Lp-spaces of abstract functions, Math. Nachr, 155, pp. 127-140, (1992)
[6]  
GRISVARD P., Elliptic Problems in Nonsmooth Domains, (2011)
[7]  
HIPP D., A Unified Error Analysis for Spatial Discretizations of Wave-Type Equations with Applications to Dynamic Boundary Conditions, (2017)
[8]  
HIPP D., HOCHBRUCK M., STOHRER C., Unified error analysis for nonconforming space discretizations of wave-type equations, IMA J. Numer. Anal, 39, pp. 1206-1245, (2019)
[9]  
HIPP D., KOVACS B., Finite element error analysis of wave equations with dynamic boundary conditions: L2 estimates, IMA J. Numer. Anal, (2020)
[10]  
HOCHBRUCK M., MAIER B., STOHRER C., Heterogeneous multiscale method for Maxwell’s equations, Multiscale Model. Simul, 17, pp. 1147-1171, (2019)