On the computation of intrinsic Proper Generalized Decomposition modes of parametric symmetric elliptic problems on Grassmann manifolds

被引:0
作者
Bandera, Alejandro [1 ,2 ]
Fernandez-Garcia, Soledad [1 ,2 ]
Gomez-Marmol, Macarena [1 ]
机构
[1] Univ Seville, Ecuac Diferenciales & Anal Numer, Calle Tarfia S-N, Seville 41012, Spain
[2] Univ Seville, Fac Matemat, Calle Tarfia S-N, Seville 41012, Spain
关键词
Proper Generalized Decomposition; Gradient descent; Grassmann manifold; Reduced order modeling; Symmetric elliptic problems; ORTHOGONAL DECOMPOSITION;
D O I
10.1016/j.amc.2024.128579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we introduce an iterative optimization algorithm to obtain the intrinsic Proper Generalized Decomposition modes of elliptic partial differential equations. The main idea behind this procedure is to adapt the general Gradient Descent algorithm to the algebraic version of the intrinsic Proper Generalized Decomposition framework, and then to couple a one-dimensional case of the algorithm with a deflation algorithm in order to keep enriching the solution by computing further intrinsic Proper Generalized Decomposition modes. For this novel iterative optimization procedure, we present some numerical tests based on physical parametric problems, in which we obtain very promising results in comparison with the ones already presented in the literature. This supports the use of this procedure in order to obtain the intrinsic PGD modes of parametric symmetric problems.
引用
收藏
页数:17
相关论文
共 22 条
[1]   A new family of solvers for some, classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids [J].
Ammar, A. ;
Mokdad, B. ;
Chinesta, F. ;
Keunings, R. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2006, 139 (03) :153-176
[2]   The proper generalized decomposition: a powerful tool for model reduction [J].
Ammar, Amine .
INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2010, 3 (02) :89-102
[3]   On the computation of Proper Generalized Decomposition modes of parametric elliptic problems [J].
Azaïez M. ;
Chacón Rebollo T. ;
Gómez Mármol M. .
SeMA Journal, 2020, 77 (1) :59-72
[4]   A NEW ALGORITHM OF PROPER GENERALIZED DECOMPOSITION FOR PARAMETRIC SYMMETRIC ELLIPTIC PROBLEMS [J].
Azaiez, M. ;
Ben Belgacem, F. ;
Casado-Diaz, J. ;
Rebollo, T. Chacon ;
Murat, F. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) :5426-5445
[5]  
Bendokat T, 2023, Arxiv, DOI arXiv:2011.13699
[6]   THE PROPER ORTHOGONAL DECOMPOSITION IN THE ANALYSIS OF TURBULENT FLOWS [J].
BERKOOZ, G ;
HOLMES, P ;
LUMLEY, JL .
ANNUAL REVIEW OF FLUID MECHANICS, 1993, 25 :539-575
[7]   GALERKIN APPROXIMATION WITH PROPER ORTHOGONAL DECOMPOSITION: NEW ERROR ESTIMATES AND ILLUSTRATIVE EXAMPLES [J].
Chapelle, Dominique ;
Gariah, Asven ;
Sainte-Marie, Jacques .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04) :731-757
[8]  
Chinesta F, 2014, SPRINGERBR APPL SCI, P1, DOI 10.1007/978-3-319-02865-1
[9]   A Short Review on Model Order Reduction Based on Proper Generalized Decomposition [J].
Chinesta, Francisco ;
Ladeveze, Pierre ;
Cueto, Elias .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2011, 18 (04) :395-404
[10]   Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models [J].
Chinesta, Francisco ;
Ammar, Amine ;
Cueto, Elias .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (04) :327-350