Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} data

被引:0
作者
Mirella Aoun [1 ]
Olivier Guibé [1 ]
机构
[1] Univ Rouen Normandie,
[2] CNRS,undefined
[3] Laboratoire de Mathématiques Raphaël Salem,undefined
[4] UMR 6085,undefined
关键词
Convection-diffusion equation; Finite volume schemes; Renormalized solution; Neumann boundary conditions; Integrable data; Numerical analysis; 65N08; 65N12; 35J25;
D O I
10.1007/s10092-024-00602-3
中图分类号
学科分类号
摘要
In this paper we study the convergence of a finite volume approximation of a convective diffusive elliptic problem with Neumann boundary conditions and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} data. To deal with the non-coercive character of the equation and the low regularity of the right hand-side we mix the finite volume tools and the renormalized techniques. To handle the Neumann boundary conditions we choose solutions having a null median and we prove a convergence result. We present also some numerical experiments in dimension 2 to illustrate the rate of convergence.
引用
收藏
相关论文
共 47 条
  • [21] Chainais-Hillairet C(undefined) data undefined undefined undefined-undefined
  • [22] Droniou J(undefined)Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure undefined undefined undefined-undefined
  • [23] Chainais-Hillairet C(undefined)Pathological solutions of elliptic differential equations undefined undefined undefined-undefined
  • [24] Liu J-G(undefined)problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus undefined undefined undefined-undefined
  • [25] Peng Y-J(undefined)undefined undefined undefined undefined-undefined
  • [26] Coudière Y(undefined)undefined undefined undefined undefined-undefined
  • [27] Gallouët T(undefined)undefined undefined undefined undefined-undefined
  • [28] Herbin R(undefined)undefined undefined undefined undefined-undefined
  • [29] Dal Maso G(undefined)undefined undefined undefined undefined-undefined
  • [30] Murat F(undefined)undefined undefined undefined undefined-undefined