Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} data

被引:0
作者
Mirella Aoun [1 ]
Olivier Guibé [1 ]
机构
[1] Univ Rouen Normandie,
[2] CNRS,undefined
[3] Laboratoire de Mathématiques Raphaël Salem,undefined
[4] UMR 6085,undefined
关键词
Convection-diffusion equation; Finite volume schemes; Renormalized solution; Neumann boundary conditions; Integrable data; Numerical analysis; 65N08; 65N12; 35J25;
D O I
10.1007/s10092-024-00602-3
中图分类号
学科分类号
摘要
In this paper we study the convergence of a finite volume approximation of a convective diffusive elliptic problem with Neumann boundary conditions and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} data. To deal with the non-coercive character of the equation and the low regularity of the right hand-side we mix the finite volume tools and the renormalized techniques. To handle the Neumann boundary conditions we choose solutions having a null median and we prove a convergence result. We present also some numerical experiments in dimension 2 to illustrate the rate of convergence.
引用
收藏
相关论文
共 47 条
  • [1] Alvino A(2010)Well-posed elliptic Neumann problems involving irregular data and domains Ann. Inst. H. Poincaré Anal. Non Linéaire 27 1017-1054
  • [2] Cianchi A(2015)On discrete functional inequalities for some finite volume schemes IMA J. Numer. Anal. 35 1125-1149
  • [3] Maz’ya VG(2015)Neumann problems for nonlinear elliptic equations with J. Differential Equations 259 898-924
  • [4] Mercaldo A(2019) data Commun. Pure Appl. Anal. 18 1023-1048
  • [5] Bessemoulin-Chatard M(1989)Uniqueness for Neumann problems for nonlinear elliptic equations J. Funct. Anal. 87 149-169
  • [6] Chainais-Hillairet C(2007)On some nonlinear elliptic and parabolic equations involving measure data Numer. Math. 105 337-374
  • [7] Filbet F(2011)Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in IMA J. Numer. Anal. 31 61-85
  • [8] Betta MF(2003)Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions M2AN, Math. Model. Numer. Anal. 37 319-338
  • [9] Guibé O(2001)Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis ESAIM: M2AN 35 767-778
  • [10] Mercaldo A(1999)Discrete sobolev inequalities and lp error estimates for finite volume solutions of convection diffusion equations Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 741-808