Exact and approximation algorithms for covering timeline in temporal graphs

被引:1
作者
Dondi, Riccardo [1 ]
Popa, Alexandru [2 ]
机构
[1] Univ Bergamo, Dipartimento Lettere Filosofia Comunicaz, Bergamo, Italy
[2] Univ Bucharest, Dept Comp Sci, Bucharest, Romania
关键词
Timeline cover; Temporal graph; NP-hard problem; Approximation algorithm; FPT algorithm; VERTEX COVER;
D O I
10.1007/s10479-024-05993-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a variant of vertex cover on temporal graphs that has been recently defined for summarization of timeline activities in temporal graphs. The problem has been proved to be NP-hard, even for several restrictions of the time domain and vertex degree. We present novel algorithmic contributions for the problem and we give an approximation algorithm of factor O ( T log n ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(T \log {n})$$\end{document} , on a temporal graph of T timestamps and n vertices. We focus then on the NP-hard restriction of the problem, where at most one temporal edge is defined in each timestamp. For this restriction we present a 4 ( T - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4(T-1)$$\end{document} approximation algorithm and a parameterized algorithm (a reduction to kernel) for parameter the cost, called span, of the solution.
引用
收藏
页码:609 / 628
页数:20
相关论文
共 27 条
[1]  
Agarwal A., 2005, P 37 ANN ACM S THEOR, P573, DOI [DOI 10.1145/1060590.1060675, 10.1145/1060590.1060675]
[2]   The temporal explorer who returns to the base [J].
Akrida, Eleni C. ;
Mertzios, George B. ;
Spirakis, Paul G. ;
Raptopoulos, Christoforos .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2021, 120 :179-193
[3]   Temporal vertex cover with a sliding time window [J].
Akrida, Eleni C. ;
Mertzios, George B. ;
Spirakis, Paul G. ;
Zarnaraev, Viktor .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2020, 107 :108-123
[4]   A 2-approximation algorithm for the undirected feedback vertex set problem [J].
Bafna, V ;
Berman, P ;
Fujito, T .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (03) :289-297
[5]   Optimization of Pearl's method of conditioning and greedy-like approximation algorithms for the vertex feedback set problem [J].
Becker, A ;
Geiger, D .
ARTIFICIAL INTELLIGENCE, 1996, 83 (01) :167-188
[6]   Edge Exploration of Temporal Graphs [J].
Bumpus, Benjamin Merlin ;
Meeks, Kitty .
ALGORITHMICA, 2023, 85 (03) :688-716
[7]  
Dondi R., 2021, SN COMPUT SCI, V2, P158, DOI [10.1007/s42979-021-00593-w, DOI 10.1007/S42979-021-00593-W]
[8]  
Dondi R., 2023, LIPICS, DOI 10.4230/LIPICS.IPEC.2023.12
[9]   Timeline Cover in Temporal Graphs: Exact and Approximation Algorithms [J].
Dondi, Riccardo ;
Popa, Alexandru .
COMBINATORIAL ALGORITHMS, IWOCA 2023, 2023, 13889 :173-184
[10]   Untangling temporal graphs of bounded degree [J].
Dondi, Riccardo .
THEORETICAL COMPUTER SCIENCE, 2023, 969