Simultaneous copper incorporation in core/shell-structured eco-friendly quantum dots for high-efficiency photoelectrochemical hydrogen evolution

被引:18
作者
Xia, Li [1 ]
Tong, Xin [1 ,2 ]
Yao, Yisen [1 ,2 ]
Long, Zhihang [1 ]
Cai, Mengke [1 ]
Jin, Lei [1 ]
Vomiero, Alberto [3 ,4 ]
Wang, Zhiming M. [1 ,2 ,5 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[3] Lulea Univ Technol, Dept Engn Sci & Math, Div Mat Sci, SE-97187 Lulea, Sweden
[4] Ca Foscari Univ Venice, Dept Mol Sci & Nanosyst, Via Torino 155, I-30170 Venice, Italy
[5] Chengdu Univ, Inst Adv Study, Chengdu 610106, Peoples R China
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Colloidal quantum dots; Environment-friendly; Core/shell system; Simultaneous copper incorporation; Solar hydrogen evolution; SENSITIZED SOLAR-CELLS; LABEL; PHOTOANODES;
D O I
10.1016/j.nanoen.2024.109302
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rational design of elemental incorporation in colloidal eco-friendly core/shell quantum dots (QDs) holds the potential to synergistically tailor their electronic band structure and carrier kinetics for applications in forthcoming "green" and high-efficiency solar energy conversion. Herein, we have conducted simultaneous Cu incorporation in both the core and shell regions of environment-benign AgInSe (AISe)/ZnSe core/shell QDs to realize high-efficiency solar-driven photoelectrochemical (PEC) hydrogen evolution. It is verified that Cu incorporation in AISe core enables an upward shift in the position of the band edge relative to the ZnSe shell, which promoted the electron delocalization and extended the lifetime of exciton. Simultaneously, Cu incorporation in the ZnSe shell further results in the trapping of photoinduced holes from AISe core, leading to a decelerated recombination of carriers. The prepared Cu-AISe/ZnSe:Cu QDs with optimized optoelectronic properties have been successfully employed to fabricate QDs-PEC devices, delivering a maximum photocurrent density of 9.1 mA cm(-2) under standard AM 1.5 G illumination (100 mW cm(-2)). Our findings indicate that synchronous elemental incorporation in eco-friendly core/shell QDs is a promising strategy to achieve future high-performance solar-to-hydrogen conversion systems.
引用
收藏
页数:9
相关论文
共 56 条
[1]   Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture [J].
Abate, Mulu Alemayehu ;
Chang, Jia-Yaw .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 182 :37-44
[2]   Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction [J].
Bang, Jiwon ;
Das, Sankar ;
Yu, Eun-Jin ;
Kim, Kangwook ;
Lim, Hyunseob ;
Kim, Sungjee ;
Hong, Jong Wook .
NANO LETTERS, 2020, 20 (09) :6263-6271
[3]   Optoelectronic Properties of Ternary I-III-VI2 Semiconductor Nanocrystals: Bright Prospects with Elusive Origins [J].
Berends, Anne C. ;
Mangnus, Mark J. J. ;
Xia, Chenghui ;
Rabouw, Freddy T. ;
Donega, Celso de Mello .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (07) :1600-1616
[4]   Ligand-Engineered Quantum Dots Decorated Heterojunction Photoelectrodes for Self-Biased Solar Water Splitting [J].
Cai, Mengke ;
Tong, Xin ;
Zhao, Hongyang ;
Li, Xin ;
You, Yimin ;
Wang, Rui ;
Xia, Li ;
Zhou, Nan ;
Wang, Lianzhou ;
Wang, Zhiming M. .
SMALL, 2022, 18 (46)
[5]   Tailored near-infrared-emitting colloidal heterostructured quantum dots with enhanced visible light absorption for high performance photoelectrochemical cells [J].
Channa, Ali Imran ;
Tong, Xin ;
Xu, Jing-Yin ;
Liu, Yongchen ;
Wang, Changmeng ;
Sial, Muhammad Naeem ;
Yu, Peng ;
Ji, Haining ;
Niu, Xiaobin ;
Wang, Zhiming M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (17) :10225-10230
[6]   Surface Rutilization of Anatase TiO2 Nanorods for Creation of Synergistically Bridging and Fencing Electron Highways [J].
Chen, Jiazang ;
Yang, Hong Bin ;
Tao, Hua Bing ;
Zhang, Liping ;
Miao, Jianwei ;
Wang, Hsin-Yi ;
Chen, Junze ;
Zhang, Hua ;
Liu, Bin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (03) :456-465
[7]   Historical red-lining is associated with fossil fuel power plant siting and present-day inequalities in air pollutant emissions [J].
Cushing, Lara J. ;
Li, Shiwen ;
Steiger, Benjamin B. ;
Casey, Joan A. .
NATURE ENERGY, 2023, 8 (01) :52-+
[8]   Hybrid PbS Quantum Dot/Nanoporous NiO Film Nanostructure: Preparation, Characterization, and Application for a Self-Powered Cathodic Photoelectrochemical Biosensor [J].
Dai, Wen-Xia ;
Zhang, Ling ;
Zhao, Wei-Wei ;
Yu, Xiao-Dong ;
Xu, Jing-Juan ;
Chen, Hong-Yuan .
ANALYTICAL CHEMISTRY, 2017, 89 (15) :8070-8078
[9]   Near-infrared broadly emissive AgInSe2/ZnS quantum dots for biomedical optical imaging [J].
Deng, Dawei ;
Qu, Lingzhi ;
Gu, Yueqing .
JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (34) :7077-7085
[10]   Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8% [J].
Fehr, Austin M. K. ;
Agrawal, Ayush ;
Mandani, Faiz ;
Conrad, Christian L. ;
Jiang, Qi ;
Park, So Yeon ;
Alley, Olivia ;
Li, Bor ;
Sidhik, Siraj ;
Metcalf, Isaac ;
Botello, Christopher ;
Young, James L. ;
Even, Jacky ;
Blancon, Jean Christophe ;
Deutsch, Todd G. ;
Zhu, Kai ;
Albrecht, Steve ;
Toma, Francesca M. ;
Wong, Michael ;
Mohite, Aditya D. .
NATURE COMMUNICATIONS, 2023, 14 (01)