Machine learning model to predict evolution of pulseless electrical activity during in-hospital cardiac arrest

被引:0
作者
Urteaga, Jon [2 ]
Elola, Andoni [3 ]
Norvik, Anders [4 ]
Unneland, Eirik [4 ]
Eftestol, Trygve C. [5 ]
Bhardwaj, Abhishek [6 ]
Buckler, David [7 ]
Abella, Benjamin S. [8 ]
Skogvoll, Eirik [4 ]
Aramendi, Elisabete [1 ,2 ,9 ]
机构
[1] nivers Basque Country UPV EHU, Escuela Ingn Billbao, Commun Engn Dept, Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Spain
[2] Univ Basque Country UPV EHU, Commun Engn Dept, Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Spain
[3] Univ Basque Country UPV EHU, Dept Elect Technol, Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Spain
[4] Norwegian Univ Sci & Technol NTNU, Dept Circulat & Med Imaging, Prinsesse Kristinas gate 3, N-7030 Trondheim, Norway
[5] Univ Stavanger UiS, Dept Elect Engn & Comp Sci, Kjell Arholms gate 41, N-4021 Stavanger, Norway
[6] Univ Calif Riverside, 900 Univ Ave, Riverside, CA 92521 USA
[7] Icahn Sch Med Mt Sinai, 1 Gustave L Levy Pl, New York, NY 10029 USA
[8] Univ Penn, Philadelphia, PA 19104 USA
[9] Biocruces Bizkaia Hlth Inst, Cruces Plaza, Baracaldo 48903, Spain
来源
RESUSCITATION PLUS | 2024年 / 17卷
关键词
Pulseless electrical activity (PEA); Machine Learning models; Cardiopulmonary resuscitation (CPR); Evolution prediction; VENTRICULAR-FIBRILLATION; WAVE-FORM; RESUSCITATION; SURVIVAL; DEFIBRILLATION; ASYSTOLE; OUTCOMES; RHYTHMS; CLASSIFICATION; MANAGEMENT;
D O I
10.1016/j.resplu.2024.100598
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Background: During pulseless electrical activity (PEA) the cardiac mechanical and electrical functions are dissociated, a phenomenon occurring in 25-42% of in -hospital cardiac arrest (IHCA) cases. Accurate evaluation of the likelihood of a PEA patient transitioning to return of spontaneous circulation (ROSC) may be vital for the successful resuscitation. The aim: We sought to develop a model to automatically discriminate between PEA rhythms with favorable and unfavorable evolution to ROSC. Methods: A dataset of 190 patients, 120 with ROSC, were acquired with defibrillators from different vendors in three hospitals. The ECG and the transthoracic impedance (TTI) signal were processed to compute 16 waveform features. Logistic regression models where designed integrating both automated features and characteristics annotated in the QRS to identify PEAs with better prognosis leading to ROSC. Cross validation techniques were applied, both patient -specific and stratified, to evaluate the performance of the algorithm. Results: The best model consisted in a three feature algorithm that exhibited median (interquartile range) Area Under the Curve/Balanced accuracy/Sensitivity/Specificity of 80.3(9.9)/75.6(8.0)/ 77.4(15.2)/72.3(16.4) %, respectively. Conclusions: Information hidden in the waveforms of the ECG and TTI signals, along with QRS complex features, can predict the progression of PEA. Automated methods as the one in this could contribute to assist in the treatment of PEA in IHCA.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Circulation detection using the electrocardiogram and the thoracic impedance acquired by defibrillation pads [J].
Alonso, Erik ;
Aramendi, Elisabete ;
Daya, Mohamud ;
Irusta, Unai ;
Chicote, Beatriz ;
Russell, James K. ;
Tereshchenko, Larisa G. .
RESUSCITATION, 2016, 99 :56-62
[2]   Beyond ventricular fibrillation analysis: Comprehensive waveform analysis for all cardiac rhythms occurring during resuscitation [J].
Alonso, Erik ;
Eftestol, Trygve ;
Aramendi, Elisabete ;
Kramer-Johansen, Jo ;
Skogvoll, Eirik ;
Nordseth, Trond .
RESUSCITATION, 2014, 85 (11) :1541-1548
[3]   ELECTROCARDIOGRAPHIC CHARACTERISTICS IN EMD [J].
AUFDERHEIDE, TP ;
THAKUR, RK ;
STUEVEN, HA ;
APRAHAMIAN, C ;
ZHU, YR ;
FARK, D ;
HARGARTEN, K ;
OLSON, D .
RESUSCITATION, 1989, 17 (02) :183-193
[4]   ECG patterns in early pulseless electrical activity-Associations with aetiology and survival of in-hospital cardiac arrest [J].
Bergum, Daniel ;
Skjeflo, Gunnar Waage ;
Nordseth, Trond ;
Mjolstad, Ole Christian ;
Haugen, Bjorn Olav ;
Skogvoll, Eirik ;
Loennechen, Jan Pal .
RESUSCITATION, 2016, 104 :34-39
[5]   A survey on ECG analysis [J].
Berkaya, Selcan Kaplan ;
Uysal, Alper Kursat ;
Gunal, Efnan Sora ;
Ergin, Semih ;
Gunal, Serkan ;
Gulmezoglu, M. Bilginer .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 43 :216-235
[6]   Postictal asystole during ECT [J].
Bhat, SK ;
Acosta, D ;
Swartz, CM .
JOURNAL OF ECT, 2002, 18 (02) :103-106
[7]   Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data [J].
Bos, R ;
de Waele, S ;
Broersen, PMT .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2002, 51 (06) :1289-1294
[8]   ASYSTOLE AND ITS TREATMENT - POSSIBLE ROLE OF THE PARASYMPATHETIC NERVOUS-SYSTEM IN CARDIAC-ARREST [J].
BROWN, DC ;
LEWIS, AJ ;
CRILEY, JM .
JACEP-JOURNAL OF THE AMERICAN COLLEGE OF EMERGENCY PHYSICIANS, 1979, 8 (11) :448-452
[9]  
Burd J, 1998, AM J GERIAT PSYCHIAT, V6, P203
[10]   QRS duration predicts outcomes in cardiac arrest survivors undergoing therapeutic hypothermia [J].
Chen, Jia-Yu ;
Huang, Chien-Hua ;
Chen, Wen-Jone ;
Chen, Wei-Ting ;
Ong, Hooi-Nee ;
Chang, Wei-Tien ;
Tsai, Min-Shan .
AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2021, 50 :707-712