Multiwall carbon nanotube impedance matching section

被引:0
|
作者
Günel, Tayfun [1 ]
机构
[1] Department of Electronics & Communication Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
来源
Progress in Electromagnetics Research Letters | 2020年 / 89卷
关键词
Genetic algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, computer-aided impedance analysis and genetic-based synthesis of a multiwall carbon nanotube impedance matching section (MWCNTIMS) are proposed. Transmission line model (TLM) of a multiwall carbon nanotube is used for the computer-aided impedance analysis. Continuous parameter genetic algorithm (CPGA) is used for the genetic-based synthesis. A simple, fast, and effective impedance analysis and synthesis approach for an MWCNTIMS is presented. The results of the analysis and synthesis for different examples of MWCNTIMS are given and discussed in detail. The results show that the effect of variation of the distance from the ground plane of the outer shell is very small on the values of input resistance and input reactance. The values of input resistance and input reactance decrease while the value of inner radius or the total number of shells increases. Since the diameter increases with the increasing value of inner radius and the total number of shells, the values of input resistance and input reactance decrease with increasing diameter. While the value of nanotube length increases, the values of input resistance and input reactance increase. © 2020, Electromagnetics Academy. All rights reserved.
引用
收藏
页码:69 / 75
相关论文
共 50 条
  • [1] Multiwall Carbon Nanotube Impedance Matching Section
    Gunel, Tayfun
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2020, 89 : 69 - 75
  • [2] Multiwall Carbon Nanotube Time Delay Section
    Gunel, Tayfun
    Yigit, Mahmud Esad
    Gunel, Gulay Oke
    2021 4TH INTERNATIONAL SYMPOSIUM ON ADVANCED ELECTRICAL AND COMMUNICATION TECHNOLOGIES (ISAECT), 2021,
  • [3] Electrical impedance spectroscopy of multiwall carbon nanotube-PDMS composites under compression
    Helseth, L. E.
    MATERIALS RESEARCH EXPRESS, 2018, 5 (10):
  • [4] Photonics with Multiwall Carbon Nanotube Arrays
    Lidorikis, Elefterios
    Ferrari, Andrea C.
    ACS NANO, 2009, 3 (05) : 1238 - 1248
  • [5] Vibration of an embedded multiwall carbon nanotube
    Yoon, J
    Ru, CQ
    Mioduchowski, A
    COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (11) : 1533 - 1542
  • [6] Multiwall carbon nanotube microcavity arrays
    Ahmed, Rajib
    Rifat, Ahmmed A.
    Yetisen, Ali K.
    Dai, Qing
    Yun, Seok Hyun
    Butt, Haider
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (11)
  • [7] Rheology of multiwall carbon nanotube suspensions
    Fan, Zhihang
    Advani, Suresh G.
    JOURNAL OF RHEOLOGY, 2007, 51 (04) : 585 - 604
  • [8] Microstructure and Multiwall Carbon Nanotube Partitioning in Polycarbonate/Acrylonitrile-Butadiene-Styrene/Multiwall Carbon Nanotube Nanocomposites
    Taheri, Somayeh
    Nakhlband, Ehsan
    Nazockdast, Hossein
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2013, 52 (03) : 300 - 309
  • [9] Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites
    Aviles, Francis
    May-Pat, Alejandro
    Canche-Escamilla, Gonzalo
    Rodriguez-Uicab, Omar
    Ku-Herrera, J. Jesus
    Duarte-Aranda, Santiago
    Uribe-Calderon, Jorge
    Gonzalez-Chi, P. Ivan
    Arronche, Luciana
    La Saponara, Valeria
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2016, 27 (01) : 92 - 103
  • [10] Origin of structural defects in multiwall carbon nanotube
    Hembram, K. P. S. S.
    Rao, G. Mohan
    MATERIALS LETTERS, 2012, 72 : 68 - 70