Thermalization of closed chaotic many-body quantum systems

被引:3
作者
Weidenmueller, Hans A. [1 ]
机构
[1] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
关键词
thermalization; quantum chaos; random matrices; SPECTRA; STATISTICS;
D O I
10.1088/1751-8121/ad389c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate thermalization of a closed chaotic many-body quantum system by combining the Hartree-Fock approach with the Bohigas-Giannoni-Schmit conjecture. The conjecture implies that locally, the residual interaction causes the statistics of eigenvalues and eigenfunctions of the full Hamiltonian to agree with random-matrix predictions. The agreement is confined to an interval Delta (the correlation width). The results are used to calculate Tr ( A rho ( t ) ) . Here rho ( t ) is the time-dependent density matrix of the system, and A represents an observable. In the semiclassical regime, the average ⟨ Tr ( A rho ( t ) ) ⟩ decays on the time scale PLANCK CONSTANT OVER TWO PI / Delta toward an asymptotic value. If the energy spread of the system is of order Delta, that value is given by Tr ( A rho eq ) where rho eq is the density matrix of statistical equilibrium. The correlation width Delta is the central parameter of our approach. We argue that Delta occurs generically in chaotic quantum systems and plays the same central role.
引用
收藏
页数:19
相关论文
共 25 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]  
Altshuler B. L., 1986, Soviet Physics - JETP, V64, P127
[3]   TIME SCALES OF ERGODIC CLASSICAL DYNAMICS IN QUANTAL SPECTRA [J].
ARVE, P .
PHYSICAL REVIEW A, 1991, 44 (10) :6920-6922
[4]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[5]  
Bohr A., 1969, Nuclear structure
[6]   Quantum chaos and thermalization in isolated systems of interacting particles [J].
Borgonovi, F. ;
Izrailev, F. M. ;
Santos, L. F. ;
Zelevinsky, V. G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 626 :1-58
[7]   Quench dynamics in randomly generated extended quantum models [J].
Brandino, G. P. ;
De Luca, A. ;
Konik, R. M. ;
Mussardo, G. .
PHYSICAL REVIEW B, 2012, 85 (21)
[8]   From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics [J].
D'Alessio, Luca ;
Kafri, Yariv ;
Polkovnikov, Anatoli ;
Rigol, Marcos .
ADVANCES IN PHYSICS, 2016, 65 (03) :239-362
[9]   Spreading widths of doorway states [J].
De Pace, A. ;
Molinari, A. ;
Weidenmueller, H. A. .
NUCLEAR PHYSICS A, 2011, 849 (01) :15-26
[10]   QUANTUM CHAOS AND STATISTICAL PROPERTIES OF ENERGY-LEVELS - NUMERICAL STUDY OF THE HYDROGEN-ATOM IN A MAGNETIC-FIELD [J].
DELANDE, D ;
GAY, JC .
PHYSICAL REVIEW LETTERS, 1986, 57 (16) :2006-2009