SSGCL: Simple Social Recommendation with Graph Contrastive Learning

被引:2
|
作者
Duan, Zhihua [1 ]
Wang, Chun [1 ]
Zhong, Wending [2 ]
机构
[1] City Univ Macau, Fac Data Sci, Macau 999078, Peoples R China
[2] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
关键词
recommendation system; collaborative filtering; social recommendation; contrastive learning; graph neural networks; MATRIX FACTORIZATION TECHNIQUES;
D O I
10.3390/math12071107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As user-item interaction information is typically limited, collaborative filtering (CF)-based recommender systems often suffer from the data sparsity issue. To address this issue, recent recommender systems have turned to graph neural networks (GNNs) due to their superior performance in capturing high-order relationships. Furthermore, some of these GNN-based recommendation models also attempt to incorporate other information. They either extract self-supervised signals to mitigate the data sparsity problem or employ social information to assist with learning better representations under a social recommendation setting. However, only a few methods can take full advantage of these different aspects of information. Based on some testing, we believe most of these methods are complex and redundantly designed, which may lead to sub-optimal results. In this paper, we propose SSGCL, which is a recommendation system model that utilizes both social information and self-supervised information. We design a GNN-based propagation strategy that integrates social information with interest information in a simple yet effective way to learn user-item representations for recommendations. In addition, a specially designed contrastive learning module is employed to take advantage of the self-supervised signals for a better user-item representation distribution. The contrastive learning module is jointly optimized with the recommendation module to benefit the final recommendation result. Experiments on several benchmark data sets demonstrate the significant improvement in performance achieved by our model when compared with baseline models.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Quaternion-Based Graph Contrastive Learning for Recommendation
    Fang, Yaxing
    Zhao, Pengpeng
    Xian, Xuefeng
    Fang, Junhua
    Liu, Guanfeng
    Liu, Yanchi
    Sheng, Victor S.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [32] Heterogeneous Graph Contrastive Learning with Attention Mechanism for Recommendation
    Li, Ruxing
    Yang, Dan
    Gong, Xi
    ENGINEERING LETTERS, 2024, 32 (10) : 1930 - 1938
  • [33] MDGCL: Message Dropout Graph Contrastive Learning for Recommendation
    Xu, Qijia
    Li, Wei
    Chen, Jingxin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14864 : 60 - 71
  • [34] Information-Controllable Graph Contrastive Learning for Recommendation
    Guo, Zirui
    Yu, Yanhua
    Wang, Yuling
    Lu, Kangkang
    Yang, Zixuan
    Pang, Liang
    Chua, Tat-Seng
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 528 - 537
  • [35] Mixed Augmentation Contrastive Learning for Graph Recommendation System
    Dong, Zhuolun
    Yang, Yan
    Zhong, Yingli
    WEB AND BIG DATA, APWEB-WAIM 2024, PT II, 2024, 14962 : 130 - 143
  • [36] Candidate-aware Graph Contrastive Learning for Recommendation
    He, Wei
    Sun, Guohao
    Lu, Jinhu
    Fang, Xiu Susie
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1670 - 1679
  • [37] Contrastive Graph Semantic Learning via prototype for recommendation
    Wen, Mi
    Wang, Hongwei
    Li, Weiwei
    Fan, Zizhu
    Yu, Xiaoqing
    INFORMATION SCIENCES, 2025, 699
  • [38] Higher-Order Graph Contrastive Learning for Recommendation
    Zheng, ZhenZhong
    Li, Jianxin
    Wu, Xiaoming
    Liu, Xiangzhi
    Pei, Lili
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 35 - 51
  • [39] Graph contrastive learning for recommendation with generative data augmentation
    Li, Xiaoge
    Wang, Yin
    Wang, Yihan
    An, Xiaochun
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [40] Multitask learning of adversarial-contrastive graph for recommendation
    Ma, Xingyu
    Wang, Chuanxu
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (02)