Impact of surface charge density modulation on ion transport in heterogeneous nanochannels

被引:13
作者
Alinezhad, Amin [1 ]
Khatibi, Mahdi [1 ]
Ashrafizadeh, Seyed Nezameddin [1 ]
机构
[1] Iran Univ Sci & Technol, Dept Chem Engn, Res Lab Adv Separat Proc, Narmaktehran 1684613114, Iran
基金
美国国家科学基金会;
关键词
PNP nanotransistor; Bipolar smart nanochannel; Depletion zone; Surface charge density; Electroosmotic flow; CURRENT RECTIFICATION; ELECTROOSMOTIC FLOW; NANOPORE; MEMBRANES; DIODE;
D O I
10.1038/s41598-024-69335-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The PNP nanotransistor, consisting of emitter, base, and collector regions, exhibits distinct behavior based on surface charge densities and various electrolyte concentrations. In this study, we investigated the impact of surface charge density on ion transport behavior within PNP nanotransistors at different electrolyte concentrations and applied voltages. We employed a finite-element method to obtain steady-state solutions for the Poisson-Nernst-Planck and Navier-Stokes equations. The ions form a depletion region, influencing the ionic current, and we analyze the influence of surface charge density on the depth of this depletion region. Our findings demonstrate that an increase in surface charge density results in a deeper depletion zone, leading to a reduction in ionic current. However, at very low electrolyte concentrations, an optimal surface charge density causes the ion current to reach its lowest value, subsequently increasing with further increments in surface charge density. As such, at Vapp=+1V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V}_{app}=+1 \text{V}$$\end{document} and C0=1mM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C}_{0}=1 \text{mM}$$\end{document}, the ionic current increases by 25% when the surface charge density rises from 5 to 20 mC.m-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{mC}.{\text{m}}<^>{-2}$$\end{document}, whereas at C0=10mM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C}_{0}=10 \text{mM}$$\end{document}, the ionic current decreases by 65% with the same increase in surface charge density. This study provides valuable insights into the behavior of PNP nanotransistors and their potential applications in nanoelectronic devices.
引用
收藏
页数:14
相关论文
共 67 条
[1]   Ionic transfer behavior of bipolar nanochannels resembling PNP nanotransistor [J].
Alinezhad, Amin ;
Khatibi, Mahdi ;
Ashrafizadeh, Seyed Nezameddin .
ELECTROCHIMICA ACTA, 2023, 460
[2]   Impact of asymmetry soft layers and ion partitioning on ionic current rectification in bipolar nanochannels [J].
Alinezhad, Amin ;
Khatibi, Mahdi ;
Ashrafizadeh, Seyed Nezameddin .
JOURNAL OF MOLECULAR LIQUIDS, 2022, 347
[3]   Fouling minimization with nanofluidic membranes; How electric field may help [J].
Aminnia, Ahmad ;
Khatibi, Mahdi ;
Ashrafizadeh, Seyed Nezameddin .
SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 325
[4]   A variational approach applied to reduce fouling with the electroosmotic flow in porous-wall microchannels [J].
Ayoubi, Samaneh ;
Khatibi, Mahdi ;
Ashrafizadeh, Seyed Nezameddin .
MICROFLUIDICS AND NANOFLUIDICS, 2021, 25 (12)
[5]   Induced-charge electrokinetic phenomena [J].
Bazant, Martin Z. ;
Squires, Todd M. .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2010, 15 (03) :203-213
[6]   Ionic Current Rectification, Breakdown, and Switching in Heterogeneous Oxide Nanofluidic Devices [J].
Cheng, Li-Jing ;
Guo, L. Jay .
ACS NANO, 2009, 3 (03) :575-584
[7]   Non-equilibrium electrokinetic micromixer with 3D nanochannel networks [J].
Choi, Eunpyo ;
Kwon, Kilsung ;
Lee, Seung Jun ;
Kim, Daejoong ;
Park, Jungyul .
LAB ON A CHIP, 2015, 15 (08) :1794-1798
[8]   Nanofluidic diode and bipolar transistor [J].
Daiguji, H ;
Oka, Y ;
Shirono, K .
NANO LETTERS, 2005, 5 (11) :2274-2280
[9]   Ion transport in nanofluidic channels [J].
Daiguji, Hirofumi .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) :901-911
[10]   Enhanced Ionic Current Rectification through Innovative Integration of Polyelectrolyte Bilayers and Charged-Wall Smart Nanochannels [J].
Dartoomi, Hossein ;
Khatibi, Mahdi ;
Ashrafizadeh, Seyed Nezameddin .
ANALYTICAL CHEMISTRY, 2022, 95 (02) :1522-1531