Non-Hermitian Waveguide Cavity QED with Tunable Atomic Mirrors

被引:7
作者
Nie W. [1 ]
Shi T. [2 ,3 ]
Liu Y.-X. [4 ]
Nori F. [5 ,6 ,7 ]
机构
[1] Center for Joint Quantum Studies, Department of Physics, School of Science, Tianjin University, Tianjin
[2] Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing
[3] Cas Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing
[4] School of Integrated Circuits, Tsinghua University, Beijing
[5] Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, Riken, Wakoshi, Saitama
[6] Center for Quantum Computing, Riken, Wakoshi, Saitama
[7] Physics Department, The University of Michigan, Ann Arbor, 48109-1040, MI
基金
日本科学技术振兴机构; 中国国家自然科学基金;
关键词
All Open Access; Green;
D O I
10.1103/PhysRevLett.131.103602
中图分类号
学科分类号
摘要
Optical mirrors determine cavity properties by means of light reflection. Imperfect reflection gives rise to open cavities with photon loss. We study an open cavity made of atom-dimer mirrors with a tunable reflection spectrum. We find that the atomic cavity shows anti-PT symmetry. The anti-PT phase transition controlled by atomic couplings in mirrors indicates the emergence of two degenerate cavity supermodes. Interestingly, a threshold of mirror reflection is identified for realizing strong coherent cavity-atom coupling. This reflection threshold reveals the criterion of atomic mirrors to produce a good cavity. Moreover, cavity quantum electrodynamics with a probe atom shows mirror-tuned properties, including reflection-dependent polaritons formed by the cavity and probe atom. Our Letter presents a non-Hermitian theory of an anti-PT atomic cavity, which may have applications in quantum optics and quantum computation. © 2023 American Physical Society.
引用
收藏
相关论文
共 98 条
  • [1] Scully M. O., Zubairy M. S., Quantum Optics, (1997)
  • [2] Agarwal G. S., Quantum Optics, (2012)
  • [3] Haroche S., Raimond J.-M., Exploring the Quantum: Atoms, Cavities, and Photons, (2006)
  • [4] Carusotto I., Ciuti C., Quantum fluids of light, Rev. Mod. Phys, 85, (2013)
  • [5] Kavokin A. V., Baumberg J. J., Malpuech G., Laussy F. P., Microcavities, (2017)
  • [6] Zhou L., Dong H., Liu Y.-X., Sun C. P., Nori F., Quantum supercavity with atomic mirrors, Phys. Rev. A, 78, (2008)
  • [7] Chang Y., Gong Z. R., Sun C. P., Multiatomic mirror for perfect reflection of single photons in a wide band of frequency, Phys. Rev. A, 83, (2011)
  • [8] Hetet G., Slodicka L., Hennrich M., Blatt R., Single Atom as a Mirror of an Optical Cavity, Phys. Rev. Lett, 107, (2011)
  • [9] Chang D. E., Jiang L., Gorshkov A., Kimble H., Cavity QED with atomic mirrors, New J. Phys, 14, (2012)
  • [10] Fratini F., Mascarenhas E., Safari L., Poizat J.-P., Valente D., Auffeves A., Gerace D., Santos M. F., Fabry-Perot Interferometer with Quantum Mirrors: Nonlinear Light Transport and Rectification, Phys. Rev. Lett, 113, (2014)