High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface

被引:13
作者
Niu, Wenzhe [1 ]
Feng, Jie [2 ,3 ]
Chen, Junfeng [1 ]
Deng, Lei [3 ,4 ]
Guo, Wen [1 ]
Li, Huajing [1 ]
Zhang, Liqiang [4 ]
Li, Youyong [2 ]
Zhang, Bo [1 ]
机构
[1] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200438, Peoples R China
[2] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
[3] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou, Peoples R China
[4] Yanshan Univ, Clean Nano Energy Ctr, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
基金
美国国家科学基金会;
关键词
CARBON-MONOXIDE; ELECTROCHEMICAL REDUCTION; SPECTROSCOPIC OBSERVATION; CO2; ELECTROREDUCTION; CONVERSION; COPPER; SELECTIVITY; ELECTRODES;
D O I
10.1038/s41467-024-51478-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The synthesis of multi-carbon (C2+) fuels via electrocatalytic reduction of CO, H2O using renewable electricity, represents a significant stride in sustainable energy storage and carbon recycling. The foremost challenge in this field is the production of extended-chain carbon compounds (C-n, n >= 3), wherein elevated *CO coverage (theta(co)) and its subsequent multiple-step coupling are both critical. Notwithstanding, there exists a "seesaw" dynamic between intensifying *CO adsorption to augment theta(co) and surmounting the C-C coupling barrier, which have not been simultaneously realized within a singular catalyst yet. Here, we introduce a facilely synthesized lattice-strain-stabilized nitrogen-doped Cu (LSN-Cu) with abundant defect sites and robust nitrogen integration. The low-coordination sites enhance theta(co) and concurrently, the compressive strain substantially fortifies nitrogen dopants on the catalyst surface, promoting C-C coupling activity. The n-propanol formation on the LSN-Cu electrode exhibits a 54% faradaic efficiency and a 29% half-cell energy efficiency. Moreover, within a membrane electrode assembly setup, a stable n-propanol electrosynthesis over 180 h at a total current density of 300 mA cm(-2) is obtained.
引用
收藏
页数:13
相关论文
共 75 条
[1]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[2]   Self-pressurizing nanoscale capsule catalysts for CO2 electroreduction to acetate or propanol [J].
Cai, Yanming ;
Yang, Ruixin ;
Fu, Jiaju ;
Li, Zhe ;
Xie, Liangyiqun ;
Li, Kai ;
Chang, Yu-Chung ;
Ding, Shichao ;
Lyu, Zhaoyuan ;
Zhang, Jian-Rong ;
Zhu, Jun-Jie ;
Lin, Yuehe ;
Zhu, Wenlei .
NATURE SYNTHESIS, 2024, 3 (07) :891-902
[3]   Surface Hydrides on Fe2P Electrocatalyst Reduce CO2 at Low Overpotential: Steering Selectivity to Ethylene Glycol [J].
Calvinho, Karin U. D. ;
Alherz, Abdulaziz W. ;
Yap, Kyra M. K. ;
Laursen, Anders B. ;
Hwang, Shinjae ;
Bare, Zachary J. L. ;
Clifford, Zachary ;
Musgrave, Charles B. ;
Dismukes, G. Charles .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (50) :21275-21285
[4]   Highly Efficient Electroreduction of CO2to C2+Alcohols on Heterogeneous Dual Active Sites [J].
Chen, Chunjun ;
Yan, Xupeng ;
Liu, Shoujie ;
Wu, Yahui ;
Wan, Qiang ;
Sun, Xiaofu ;
Zhu, Qinggong ;
Liu, Huizhen ;
Ma, Jun ;
Zheng, Lirong ;
Wu, Haihong ;
Han, Buxing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (38) :16459-16464
[5]   Efficient Electrocatalytic Reduction of CO2 to Ethane over Nitrogen-Doped Fe2O3 [J].
Chen, Peng ;
Zhang, Pei ;
Kang, Xinchen ;
Zheng, Lirong ;
Mo, Guang ;
Wu, Ruizhi ;
Tai, Jing ;
Han, Buxing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (32) :14769-14777
[6]   Silver and Copper Nitride Cooperate for CO Electroreduction to Propanol [J].
Duong, Hong Phong ;
de la Cruz, Jose Guillermo Rivera ;
Tran, Ngoc-Huan ;
Louis, Jacques ;
Zanna, Sandrine ;
Portehault, David ;
Zitolo, Andrea ;
Walls, Michael ;
Peron, Deizi Vanessa ;
Schreiber, Moritz W. ;
Menguy, Nicolas ;
Fontecave, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (49)
[7]   Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products [J].
Feng, Jiaqi ;
Zhang, Libing ;
Liu, Shoujie ;
Xu, Liang ;
Ma, Xiaodong ;
Tan, Xingxing ;
Wu, Limin ;
Qian, Qingli ;
Wu, Tianbin ;
Zhang, Jianling ;
Sun, Xiaofu ;
Han, Buxing .
NATURE COMMUNICATIONS, 2023, 14 (01)
[8]   Pseudopotentials for high-throughput DFT calculations [J].
Garrity, Kevin F. ;
Bennett, Joseph W. ;
Rabe, Karin M. ;
Vanderbilt, David .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 81 :446-452
[9]   Revolutionizing CO2 Electrolysis: Fluent Gas Transportation within Hydrophobic Porous Cu2O [J].
Geng, Qinghong ;
Fan, Longlong ;
Chen, Huige ;
Zhang, Chunhui ;
Xu, Zhe ;
Tian, Ye ;
Yu, Cunming ;
Kang, Lei ;
Yamauchi, Yusuke ;
Li, Cuiling ;
Jiang, Lei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (15) :10599-10607
[10]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)