LEO Clock Synchronization with Entangled Light

被引:2
|
作者
Gosalia, Ronakraj [1 ]
Malaney, Robert [1 ]
Aguinaldo, Ryan [2 ]
Green, Jonathan [2 ]
Brereton, Peter [3 ]
机构
[1] Univ New South Wales, Sydney, NSW 2052, Australia
[2] Northrop Grumman Corp, San Diego, CA 92128 USA
[3] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
D O I
10.1109/GLOBECOM54140.2023.10437698
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Precision navigation and timing, very-long-baseline interferometry, next-generation communication, sensing, and tests of fundamental physics all require a highly synchronized network of clocks. With the advance of highly-accurate optical atomic clocks, the precision requirements for synchronization are reaching the limits of classical physics (i.e. the standard quantum limit, SQL). Efficiently overcoming the SQL to reach the fundamental Heisenberg limit can be achieved via the use of squeezed or entangled light. Although approaches to the Heisenberg limit are well understood in theory, a practical implementation, such as in space-based platforms, requires that the advantage outweighs the added costs and complexity. Here, we focus on the question: can entanglement yield a quantum advantage in clock synchronization over lossy satellite-to-satellite channels? We answer in the affirmative, showing that the redundancy afforded by the two-mode nature of entanglement allows recoverability even over asymmetrically lossy channels. We further show this recoverability is an improvement over single-mode squeezing sensing, thereby illustrating a new complexity-performance trade-off for space-based sensing applications.
引用
收藏
页码:2317 / 2322
页数:6
相关论文
共 50 条
  • [41] On decoherence in quantum clock synchronization
    Boixo, S.
    Caves, C. M.
    Datta, A.
    Shaji, A.
    LASER PHYSICS, 2006, 16 (11) : 1525 - 1532
  • [42] CLOCK SYNCHRONIZATION SYSTEMS (REVIEW).
    Zeliger, A.N.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 1975, 29-30 (03): : 48 - 52
  • [43] Online Incremental Clock Synchronization
    Masoume Jabbarifar
    Michel Dagenais
    Alireza Shameli-Sendi
    Journal of Network and Systems Management, 2015, 23 : 1034 - 1066
  • [44] Clock synchronization for fractal modulation
    Fu, CM
    Hwang, WL
    Huang, CL
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 2809 - 2812
  • [45] Requirements for Secure Clock Synchronization
    Narula, Lakshay
    Humphreys, Todd E.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (04) : 749 - 762
  • [46] Optimal Clock Synchronization in Networks
    Lenzen, Christoph
    Sommer, Philipp
    Wattenhofer, Roger
    SENSYS 09: PROCEEDINGS OF THE 7TH ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS, 2009, : 225 - 238
  • [47] Clock synchronization on the RAX spacecraft
    Springmann, John C.
    Kempke, Benjamin P.
    Cutler, James W.
    Bahcivan, Hasan
    ACTA ASTRONAUTICA, 2014, 98 : 111 - 119
  • [48] CLOCK SYNCHRONIZATION AND THE POWER OF BROADCASTING
    HALPERN, JY
    SUZUKI, I
    DISTRIBUTED COMPUTING, 1991, 5 (02) : 73 - 82
  • [49] Adaptive Internal Clock Synchronization
    Jerzak, Zbigniew
    Fach, Robert
    Fetzer, Christof
    PROCEEDINGS OF THE SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS, 2008, : 217 - 226
  • [50] CLOCK SYNCHRONIZATION IN A ROTATING FRAME
    COHEN, JM
    FTACLAS, C
    MOSES, HE
    PHYSICAL REVIEW D, 1979, 19 (04): : 1273 - 1274