Boundary Effect Under 2D Newtonian Gravity Potential in the Phase Space

被引:0
作者
Jin J. [1 ]
Kim C. [2 ]
机构
[1] Department of Mathematics, The Ohio State University, Columbus, 43210, OH
[2] Department of Mathematics, University of Wisconsin-Madison, Madison, 53706, WI
来源
La Matematica | 2024年 / 3卷 / 2期
基金
英国科研创新办公室; 美国国家科学基金会;
关键词
Diffusive reflection boundary; Logarithmic gravity potential; Vlasov equation;
D O I
10.1007/s44007-024-00097-y
中图分类号
学科分类号
摘要
We study linear two-and-a-half-dimensional Vlasov equations under the logarithmic gravity potential in the half-space of diffuse reflection boundary. We prove decay-in-time of the exponential moments with a polynomial rate, which depends on the base logarithm. © The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2024.
引用
收藏
页码:604 / 650
页数:46
相关论文
共 7 条
  • [1] Aoki K., Golse F., On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, 4, 1, pp. 87-107, (2011)
  • [2] Bernou A., A semigroup approach to the convergence rate of a collisionless gas, Kinet. Relat. Models, 13, 6, pp. 1071-1106, (2020)
  • [3] Canizo A.J., Mischler S., Harris-type results on geometric and subgeometric convergence to equilibrium for stochastic semigroups, J. Funct. Anal, 284, 7, (2023)
  • [4] Jin J., Kim C., Damping of kinetic transport equation with diffuse boundary condition, SIAM J. Math. Anal, 54, 5, pp. 5524-5550, (2022)
  • [5] Jin J., Kim C., Exponential Mixing of Vlasov equations under the effect of gravity and boundary, J. Differ. Equ, 366, (2023)
  • [6] Kim C., Nonlinear Asymptotic Stability of Inhomogeneous Steady Solutions to Boundary Problems of Vlasov–Poisson Equation
  • [7] Lods B., Mokhtar-Kharroubi M., Rudnicki R., Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators, Ann. Inst. H. Poincare Anal. Non Lineaire, 37, 4, pp. 877-923, (2020)