Fractional-order Fixed-time Non-singular Sliding Mode Control for Nonlinear Robotic Manipulators

被引:1
作者
Ahmed, Saim [1 ]
Azar, Ahmad Taher [1 ,2 ]
Hameed, Ibrahim A. [3 ]
机构
[1] Prince Sultan Univ, Coll Comp & Informat Sci, ASSCL, Riyadh 11586, Saudi Arabia
[2] Benha Univ, Fac Computers & Artificial Intelligence, Banha 13518, Egypt
[3] Norwegian Univ Sci & Technol, Dept ICT & Nat Sci, Larsgardsve Gen,2, N-6009 A Lesund, Norway
关键词
Fixed-time SMC; nonlinear robotic manipulators; fractional-order control; fast; convergence;
D O I
10.1016/j.ifacol.2023.10.965
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, fractional-order non-singular fixed-time terminal sliding mode control (FoFxNTSM) for nonlinear robotic manipulators in the existence of uncertainties and external disturbances is examined. To begin, the concept of fractional-order fixed-time non-singular terminal sliding mode control is introduced. This method combines the benefits of NTSM (which provides fast convergence speed, smooth and singularity-free control inputs) with the advantages of a fractional-order constants (which improves position tracking effectiveness). Lyapunov analysis yields the fixed-time stability of the closed-loop system. To evaluate and illustrate the performance of the proposed strategy, the relevant simulation results are presented. Copyright (c) 2023 The Authors.
引用
收藏
页码:8105 / 8110
页数:6
相关论文
共 26 条
[1]   Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique [J].
Aghababa, Mohammad Pourmahmood .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :247-261
[2]   Robust model reference adaptive control for five-link robotic exoskeleton [J].
Ahmed, Saim .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2021, 39 (04) :324-331
[3]   Fault Tolerant Control Using Fractional-order Terminal Sliding Mode Control for Robotic Manipulators [J].
Ahmed, Saim ;
Wang, Haoping ;
Tian, Yang .
STUDIES IN INFORMATICS AND CONTROL, 2018, 27 (01) :55-64
[4]  
Ahmed S, 2016, CHIN CONTR CONF, P6115, DOI 10.1109/ChiCC.2016.7554317
[5]   Metaheuristic Optimization of Fractional Order Incremental Conductance (FO-INC) Maximum Power Point Tracking (MPPT) [J].
Ammar, Hossam Hassan ;
Azar, Ahmad Taher ;
Shalaby, Raafat ;
Mahmoud, M. I. .
COMPLEXITY, 2019, 2019
[6]  
Azar A T., 2018, Mathematical Techniques of Fractional Order Systems
[7]  
Azar A.T., 2018, Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications
[8]   Fractional Order Sliding Mode PID Controller/Observer for Continuous Nonlinear Switched Systems with PSO Parameter Tuning [J].
Azar, Ahmad Taher ;
Serrano, Fernando E. .
INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 :13-22
[9]   Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty [J].
Dadras, Sara ;
Momeni, Hamid Reza .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) :367-377
[10]   Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm [J].
Efe, Mehmet Oender .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (06) :1561-1570