The weak Lefschetz property and mixed multiplicities of monomial ideals

被引:1
作者
Holleben, Thiago [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, POB 15000,6316 Coburg Rd, Halifax, NS B3H 4R2, Canada
关键词
Lefschetz properties; Graded Artinian rings; Mixed multiplicities; Monomial ideals;
D O I
10.1007/s10801-024-01337-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, H. Dao and R. Nair gave a combinatorial description of simplicial complexes Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} such that the squarefree reduction of the Stanley-Reisner ideal of Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} has the WLP in degree 1 and characteristic zero. In this paper, we apply the connections between analytic spread of equigenerated monomial ideals, mixed multiplicities and birational monomial maps to give a sufficient and necessary condition for the squarefree reduction A(Delta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(\Delta )$$\end{document} to satisfy the WLP in degree i and characteristic zero in terms of mixed multiplicities of monomial ideals that contain combinatorial information of Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, we call them incidence ideals. As a consequence, we give an upper bound to the possible failures of the WLP of A(Delta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(\Delta )$$\end{document} in degree i in positive characteristics in terms of mixed multiplicities. Moreover, we extend Dao and Nair's criterion to arbitrary monomial ideals in positive odd characteristics.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 32 条
  • [1] Alilooee A., 2015, COMMUTATIVE ALGEBRA, P1
  • [2] Generalized multiplicities of edge ideals
    Alilooee, Ali
    Soprunov, Ivan
    Validashti, Javid
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2018, 47 (03) : 441 - 472
  • [3] Ansaldi K., RANDOMIDEALS CREATIN
  • [4] Boij M., 1996, THESIS KTH
  • [5] Bruns W, 2009, SPRINGER MONOGR MATH, P3, DOI 10.1007/b105283_1
  • [6] When are multidegrees positive?
    Castillo, Federico
    Cid-Ruiz, Yairon
    Li, Binglin
    Montano, Jonathan
    Zhang, Naizhen
    [J]. ADVANCES IN MATHEMATICS, 2020, 374
  • [7] Cook D, NAUTYGRAPHS INTERFAC
  • [8] LEFSCHETZ PROPERTIES OF BALANCED 3-POLYTOPES
    Cook, David, II
    Juhnke-Kubitzke, Martina
    Murai, Satoshi
    Nevo, Eran
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (03) : 769 - 790
  • [9] Cooper S., 2023, arXiv
  • [10] Cox D.A., 2005, USING ALGEBRAIC GEOM, V185