Weak amenability for dual Banach algebras

被引:0
作者
Mahmoodi, Amin [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Cent Tehran Branch, Tehran, Iran
关键词
dual Banach algebra; Connes amenability; weak amenability; weak Connes amenability; CONNES-AMENABILITY;
D O I
10.1017/S0013091524000300
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A suitable notion of weak amenability for dual Banach algebras, which we call weak Connes amenability, is defined and studied. Among other things, it is proved that the measure algebra M(G) of a locally compact group G is always weakly Connes amenable. It can be a complement to Johnson's theorem that $L<^>1(G)$ is always weakly amenable [10].
引用
收藏
页码:740 / 748
页数:9
相关论文
共 17 条
  • [1] BADE WG, 1987, P LOND MATH SOC, V55, P359
  • [2] Approximate amenability for Banach sequence algebras
    Dales, H. G.
    Loy, R. J.
    Zhang, Y.
    [J]. STUDIA MATHEMATICA, 2006, 177 (01) : 81 - 96
  • [3] Dales H.G, 2000, Banach Algebras and Automatic Continuity, V24
  • [4] The amenability of measure algebras
    Dales, HG
    Ghahramani, R
    Helemskii, AY
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 213 - 226
  • [5] Dual Banach algebras: representations and injectivity
    Daws, Matthew
    [J]. STUDIA MATHEMATICA, 2007, 178 (03) : 231 - 275
  • [6] Daws M, 2006, MATH SCAND, V99, P217
  • [7] WEAK AMENABILITY OF GROUP-ALGEBRAS OF LOCALLY COMPACT-GROUPS
    DESPIC, M
    GHAHRAMANI, F
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (02): : 165 - 167
  • [8] Pseudo-amenable and pseudo-contractible Banach algebras
    Ghahramani, F.
    Zhang, Y.
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 142 : 111 - 123
  • [9] Generalized notions of amenability
    Ghahramani, F
    Loy, RJ
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (01) : 229 - 260
  • [10] Johnson B. E., 1988, Harmonic analysis(Luxembourg, 1987), P191