Deep learning-based bubble detection with swin transformer

被引:0
|
作者
Uesawa, Shinichiro [1 ]
Yoshida, Hiroyuki [1 ]
机构
[1] Japan Atom Energy Agcy, Res Grp Reactor Phys & Thermal Hydraul Technol, 2-4 Shirakata, Tokai, Ibaraki 3191195, Japan
关键词
two-phase flow; thermal hydraulics; deep learning; vision transformer; swin transformer; bubble detector; SIZE DISTRIBUTION; ALGORITHM;
D O I
10.1080/00223131.2024.2348023
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
We developed a deep learning-based bubble detector with a Shifted window Transformer (Swin Transformer) to detect and segment individual bubbles among overlapping bubbles. To verify the performance of the detector, we calculated its average precision (AP) with different number of training images. The mask AP increased with the increase in the number of training images when there were less than 50 images. It was observed that the AP for the Swin Transformer and ResNet were almost the same when there were more than 50 images; however, when few training images were used, the AP of the Swin Transformer were higher than that of the ResNet. Furthermore, for the increase in void fraction, the AP of the Swin Transformer showed a decrease similar to that in the case of the ResNet; however, for few training images, the AP of the Swin Transformer was higher than that of the ResNet in all void fractions. Moreover, we confirmed the detector trained with experimental and synthetic bubble images was able to segment overlapping bubbles and deformed bubbles in a bubbly flow experiment. Thus, we verified that the new bubble detector with Swin Transformer provided higher AP than the detector with ResNet for fewer training images.
引用
收藏
页码:1438 / 1452
页数:15
相关论文
共 50 条
  • [41] A survey of deep learning-based network anomaly detection
    Kwon, Donghwoon
    Kim, Hyunjoo
    Kim, Jinoh
    Suh, Sang C.
    Kim, Ikkyun
    Kim, Kuinam J.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1): : 949 - 961
  • [42] Deep Learning-Based Weed Detection in Turf: A Review
    Jin, Xiaojun
    Liu, Teng
    Chen, Yong
    Yu, Jialin
    AGRONOMY-BASEL, 2022, 12 (12):
  • [43] Deep Learning-based Joint Symbol Detection for NOMA
    Emir, Ahmet
    Kara, Ferdi
    Kaya, Hakan
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [44] Deep Learning-Based Pneumothorax Detection in Ultrasound Videos
    Mehanian, Courosh
    Kulhare, Sourabh
    Millin, Rachel
    Zheng, Xinliang
    Gregory, Cynthia
    Zhu, Meihua
    Xie, Hua
    Jones, James
    Lazar, Jack
    Halse, Amber
    Graham, Todd
    Stone, Mike
    Gregory, Kenton
    Wilson, Ben
    SMART ULTRASOUND IMAGING AND PERINATAL, PRETERM AND PAEDIATRIC IMAGE ANALYSIS, SUSI 2019, PIPPI 2019, 2019, 11798 : 74 - 82
  • [45] Deep learning-based image forgery detection system
    Suresh, Helina Rajini
    Shanmuganathan, M.
    Senthilkumar, T.
    Vidhyasagar, B. S.
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2024, 16 (02) : 160 - 172
  • [46] Review of Deep Learning-Based Video Anomaly Detection
    Ji G.
    Qi X.
    Wang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2024, 37 (02): : 128 - 143
  • [47] Swin transformer based vehicle detection in undisciplined traffic environment
    Deshmukh, Prashant
    Satyanarayana, G. S. R.
    Majhi, Sudhan
    Sahoo, Upendra Kumar
    Das, Santos Kumar
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [48] MultiResEdge: A deep learning-based edge detection approach
    Muntarina, Kanija
    Mostafiz, Rafid
    Khanom, Fahmida
    Shorif, Sumaita Binte
    Uddin, Mohammad Shorif
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2023, 20
  • [49] Melanoma Detection Using Deep Learning-Based Classifications
    Alwakid, Ghadah
    Gouda, Walaa
    Humayun, Mamoona
    Sama, Najm Us
    HEALTHCARE, 2022, 10 (12)
  • [50] Deep Learning-Based Detection of Glottis Segmentation Failures
    Dadras, Armin A.
    Aichinger, Philipp
    BIOENGINEERING-BASEL, 2024, 11 (05):