Soil compaction reversed the effect of arbuscular mycorrhizal fungi on soil hydraulic properties

被引:0
|
作者
Puschel, David [1 ]
Rydlova, Jana [1 ]
Sudova, Radka [1 ]
Jansa, Jan [2 ]
Bitterlich, Michael [3 ]
机构
[1] Czech Acad Sci, Inst Bot, Dept Mycorrhizal Symbioses, Zamek 1, Pruhonice 25243, Czech Republic
[2] Czech Acad Sci, Inst Microbiol, Lab Fungal Biol, Videnska 1083, Prague 14200 4, Czech Republic
[3] Humboldt Univ, Albrecht Daniel Thaer Inst Agr & Hort Sci, Div Urban Plant Ecophysiol, Lentzeallee 55-57, D-14195 Berlin, Germany
关键词
Arbuscular mycorrhizal fungi; Irrigation; Pot shape; Sand-zeolite-soil mixture; Tomato; Water holding capacity; WATER; NITROGEN; NUTRIENT; HYPHAE; PLANTS;
D O I
10.1007/s00572-024-01153-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arbuscular mycorrhizal fungi (AMF) typically provide a wide range of nutritional benefits to their host plants, and their role in plant water uptake, although still controversial, is often cited as one of the hallmarks of this symbiosis. Less attention has been dedicated to other effects relating to water dynamics that the presence of AMF in soils may have. Evidence that AMF can affect soil hydraulic properties is only beginning to emerge. In one of our recent experiments with dwarf tomato plants, we serendipitously found that the arbuscular mycorrhizal fungus (Rhizophagus irregularis 'PH5') can slightly but significantly reduce water holding capacity (WHC) of the substrate (a sand-zeolite-soil mixture). This was further investigated in a subsequent experiment, but there we found exactly the opposite effect as mycorrhizal substrate retained more water than did the non-mycorrhizal substrate. Because the same substrate was used and other conditions were mostly comparable in the two experiments, we explain the contrasting results by different substrate compaction, most likely caused by different pot shapes. It seems that in compacted substrates, AMF may have no effect upon or even decrease the substrates' WHC. On the other hand, the AMF hyphae interweaving the pores of less compacted substrates may increase the capillary movement of water throughout such substrates and cause slightly more water to remain in the pores after the free water has drained. We believe that this phenomenon is worthy of mycorrhizologists' attention and merits further investigation as to the role of AMF in soil hydraulic properties.
引用
收藏
页码:361 / 368
页数:8
相关论文
共 50 条
  • [1] ARBUSCULAR MYCORRHIZAL FUNGI AND SOIL AGGREGATION
    Borie, Fernando
    Rubio, Rosa
    Morales, Alfredo
    REVISTA DE LA CIENCIA DEL SUELO Y NUTRICION VEGETAL, 2008, 8 (02): : 9 - 18
  • [2] CORN (ZEA MAYS L.) GROWTH AS AFFECTED BY SOIL COMPACTION AND ARBUSCULAR MYCORRHIZAL FUNGI
    Miransari, M.
    JOURNAL OF PLANT NUTRITION, 2013, 36 (12) : 1853 - 1867
  • [3] Mycorrhizal fungi arbuscular in forage grasses cultivated in Cerrado soil
    Lucas, Leidiane dos Santos
    Neto, Aurelio Rubio
    de Moura, Jadson Belem
    de Souza, Rodrigo Fernandes
    Fernandes Santos, Maria Eduarda
    de Moura, Lorena Fernandes
    Xavier, Elitania Gomes
    dos Santos, Jose Mateus
    Nehring, Ryan
    Dutra e Silva, Sandro
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Factorial Analysis on Flooded Soil Recovery Using Soil Containing Arbuscular Mycorrhizal Fungi
    Zainol, N.
    Thangaperumal, N.
    Zahari, N. H.
    Aziz, N. H.
    2ND INTERNATIONAL CONFERENCE ON GREEN DESIGN AND MANUFACTURE 2016 (ICONGDM 2016), 2016, 78
  • [5] Effect of arbuscular mycorrhizal fungi on aggregate stability of a clay soil inoculating with two different host plants
    Xu, Ping
    Liang, Lin Zhou
    Dong, Xiao Ying
    Shen, Ren Fang
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2015, 65 (01) : 23 - 29
  • [6] Synergistic Effect of Arbuscular Mycorrhizal Fungi and Rhizobium on Glomalin Related Soil Protein and Biochemical Properties of Blackgram Rhizosphere Soil
    Anandakumar, Selvaraj
    Kalaiselvi, Thangavel
    Kuttimani, Ramalingam
    Umapathi, Muniyappan
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2024, 24 (03) : 5534 - 5551
  • [7] Interactions between arbuscular mycorrhizal fungi and soil bacteria
    Mohammad Miransari
    Applied Microbiology and Biotechnology, 2011, 89 : 917 - 930
  • [8] Interactions between arbuscular mycorrhizal fungi and soil bacteria
    Miransari, Mohammad
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 89 (04) : 917 - 930
  • [9] Potential of arbuscular mycorrhizal fungi for soil health: A review
    Zhang, Junling
    Zhao, Ruotong
    Li, Xia
    Zhang, Jiangzhou
    PEDOSPHERE, 2024, 34 (02) : 279 - 288
  • [10] Soil properties and climate affect arbuscular mycorrhizal fungi and soil microbial communities in Mediterranean rainfed cereal cropping systems
    Jerbi, Maroua
    Labidi, Sonia
    Bahri, Bochra A.
    Laruelle, Frederic
    Tisserant, Benoit
    Ben Jeddi, Faysal
    Sahraoui, Anissa Lounes-Hadj
    PEDOBIOLOGIA, 2021, 87-88