共 36 条
- [1] Alanni R., Hou J., Azzawi H., Xiang Y., Deep gene selection method to select genes from microarray datasets for cancer classification, BMC bioinformatics, 20, 608, pp. 1-15, (2019)
- [2] Badve S., Turbin D., Thorat M. A., Morimiya A., Nielsen T. O., Perou C. M., Dunn S., Huntsman D. G., Nakshatri H., Foxa1 expression in breast cancer— correlation with luminal subtype a and survival, Clinical cancer research, 13, 15, pp. 4415-4421, (2007)
- [3] Baldi P., Brunak S., Chauvin Y., Andersen C. A., Nielsen H., Assessing the accuracy of prediction algorithms for classification: an overview, Bioinformatics, 16, 5, pp. 412-424, (2000)
- [4] Bergstra J., Bengio Y., Random search for hyper-parameter optimization, The Journal of Machine Learning Research, 13, 1, pp. 281-305, (2012)
- [5] Bi Y., Xiang D., Ge Z., Li F., Jia C., Song J., An interpretable prediction model for identify-ing n7-methylguanosine sites based on xgboost and shap, Molecular Therapy-Nucleic Acids, 22, pp. 362-372, (2020)
- [6] Bray F., Ferlay J., Soerjomataram I., . Siegel R., Torre L., Jemal A., Global cancer statistics 2018, CA: A Cancer Journal for Clinicians, 68, pp. 394-424, (2018)
- [7] Chen X., Hu H., He L., Yu X., Liu X., Zhong R., Shu M., A novel subtype classification and risk of breast cancer by histone modification profiling, Breast cancer research and treatment, 157, 2, pp. 267-279, (2016)
- [8] Chia S. K., Bramwell V. H., Tu D., Et al., A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen, Clinical cancer research, 18, 16, pp. 4465-4472, (2012)
- [9] Chicco D., Ten quick tips for machine learning in computational biology, BioData mining, 10, 1, pp. 1-17, (2017)
- [10] Dai X., Li T., Bai Z., Yang Y., Liu X., Zhan J., Shi B., Breast cancer intrinsic subtype classification, clinical use and future trends, American journal of cancer research, 5, 10, (2015)