PORTING AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD TO GPUS

被引:1
作者
Abdeselam A.E.H. [1 ]
Napov A. [1 ]
Notay Y. [1 ]
机构
[1] Université Libre de Bruxelles, Service de Métrologie Nucléaire (C.P. 165-84), 50 Av. F.D. Roosevelt, Brussels
来源
Electronic Transactions on Numerical Analysis | 2022年 / 55卷
基金
欧盟地平线“2020”;
关键词
AMG; GPU; iterative methods; linear systems; multigrid; parallel computing; preconditioning;
D O I
10.1553/etna_vol55s687
中图分类号
学科分类号
摘要
We present a hybrid GPU-CPU version of the AGMG software, a popular algebraic multigrid (AMG) solver which implements an aggregation-based AMG method. With the new implementation, the solution stage runs on a GPU, except operations on the coarsest grid, which are executed on a CPU. To maximize the speedup, two novel features are introduced. On the one hand, ℓ1-Jacobi smoothing is combined with polynomial acceleration (or polynomial smoothing), leading to improved performance compared with standard ℓ1-Jacobi smoothing, while not requiring to compute eigenvalue estimates as standard polynomial smoothing does. On the other hand, besides the K-cycle used in standard AGMG, we introduce the relaxed W-cycle, which tends to combine the advantages of the K-cycle and the standard W-cycle. Numerical results show that the new implementation inherits the robustness of the original AGMG software, while bringing significant speedups on GPUs. A comparison with AmgX, a reference AMG solver from NVIDIA, suggests that the presented hybrid GPU-CPU version of AGMG is more robust and often significantly faster in the solution stage. Copyright © 2022, Kent State University.
引用
收藏
页码:687 / 705
页数:18
相关论文
共 30 条
  • [1] ADAMS M., BREZINA M., HU J., TUMINARO R., Parallel multigrid smoothing: polynomial versus Gauss-Seidel, J. Comput. Phys, 188, pp. 593-610, (2003)
  • [2] ANZT H., TOMOV S., GATES M., DONGARRA J., HEUVELINE V., Block-asynchronous multigrid smoothers for GPU-accelerated systems, Procedia Comput. Sci, 9, pp. 7-16, (2012)
  • [3] AXELSSON O., Iterative Solution Methods, (1994)
  • [4] BAKER A. H., FALGOUT R. D., KOLEV T. V., YANG U. M., Multigrid smoothers for ultraparallel computing, SIAM J. Sci. Comput, 33, pp. 2864-2887, (2011)
  • [5] BRIGGS W. L., HENSON V. E., MCCORMICK S., A Multigrid Tutorial, (2000)
  • [6] DICK E., RIEMSLAGH K., Multi-staging of Jacobi relaxation to improved smoothing properties of multigrid methods for steady Euler equations, J. Comput. Appl. Math, 50, pp. 241-254, (1994)
  • [7] EISENSTAT S. C., ELMAN H. C., SCHULTZ M. H., Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal, 20, pp. 345-357, (1983)
  • [8] ALERSTAM E., SVENSSON T., ANDERSSON-ENGELS S., Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration, J. Biomed. Optics, 13, (2008)
  • [9] FALGOUT R. D., LI R., SJOGREEN B., WANG L., YANG U. M., Porting hypre to heterogeneous computer architectures: strategies and experiences, Parallel Comput, 108, (2021)
  • [10] GHYSELS P., KLOSIEWICZ P., VANROOSE W., Improving the arithmetic intensity of multigrid with the help of polynomial smoothers, Numer. Linear Algebra Appl, 19, pp. 253-267, (2012)