Global attracting set of stochastic differential equations with unbounded delay driven by fractional Ornstein-Uhlenbeck process

被引:0
作者
Peng, Yarong [1 ,2 ]
Xu, Liping [1 ]
Li, Zhi [1 ]
机构
[1] Yangtze Univ, Sch Informat & Math, Jingzhou 434023, Hubei, Peoples R China
[2] Guangdong Univ Sci & Technol, Coll Gen Educ, Dongguan 523668, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Global attracting set; quasi-invariant sets; fractional Ornstein-Uhlenbeck process;
D O I
10.1515/rose-2024-2004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we have studied stochastic differential equations with unbounded delay in fractional power spaces perturbed by fractional Ornstein-Uhlenbeck process Y-H,Y-xi(t) with H is an element of(1/2 , 1). Subsequently, the existence and uniqueness of mild solution of the considered equation have been proved with fixed-point theorem. Finally, we obtain the global attracting set of the considered equations by some stochastic analysis and inequality technique.
引用
收藏
页码:143 / 158
页数:16
相关论文
共 20 条
[1]   Global attracting sets of stochastic functional differential equations driven by a square integrable Levy martingale [J].
Bakka, Abdelfouad ;
Hajji, Salah .
AFRIKA MATEMATIKA, 2021, 32 (7-8) :1173-1178
[2]  
Benth F., 2003, Applied Mathematical Finance, V10, P303
[3]   MINIMUM CONTRAST ESTIMATION IN FRACTIONAL ORNSTEIN-UHLENBECK PROCESS: CONTINUOUS AND DISCRETE SAMPLING [J].
Bishwal, Jaya P. N. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) :375-410
[4]   Fractional integral equations and state space transforms [J].
Buchmann, Boris ;
Klueppelberg, Claudia .
BERNOULLI, 2006, 12 (03) :431-456
[5]  
Caraballo T, 2008, DISCRETE CONT DYN-A, V21, P415
[6]  
Cheridito P., 2003, ELECTRON J PROBAB, V8, P1, DOI 10.1214/EJP.v8-125
[7]  
Da Prato G., 1992, Encyclopedia of Mathematics and Its Applications
[8]   The Brownian movement and stochastic equations [J].
Doob, JL .
ANNALS OF MATHEMATICS, 1942, 43 :351-369
[9]  
Hg E. P., 2006, FINANCE RESEARCHGROU
[10]  
Li L., 2021, NONLINEAR ANALHYBRID, V41