A 22-to-37.8-GHz Low-Gain-Phase-Error Variable-Gain Amplifier With Impedance-Compensation Technique in 65-nm CMOS Process

被引:2
|
作者
Yu, Yiming [1 ,2 ]
Geng, Mengqian [3 ]
Peng, Sirui [3 ]
Li, Junfeng [3 ]
Zhao, Chenxi [3 ]
Liu, Huihua [3 ]
Wu, Yunqiu [3 ]
Kang, Kai [3 ]
机构
[1] Univ Elect Sci & Technol China UESTC, Sch Elect Engn, Chengdu 611731, Peoples R China
[2] UESTC, Chengdu Res Inst, Chengdu 610207, Peoples R China
[3] UESTC, Sch Elect Engn, Chengdu 611731, Peoples R China
来源
IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS | 2024年 / 34卷 / 06期
基金
中国国家自然科学基金;
关键词
Gain; Wideband; Tuning; Circuits; Logic gates; Impedance; Varactors; CMOS; impedance-compensation technique; transformer; variable-gain amplifier (VGA); wideband;
D O I
10.1109/LMWT.2024.3382588
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a wideband variable-gain amplifier (VGA) with an impedance-compensation technique for 5G new radio. To minimize the gain and phase errors of a millimeter-wave VGA in a wide frequency band, a parasitic-capacitance-compensation method based on varactors is proposed to alleviate the input impedance variation of a cross-coupled structure. To extend gain bandwidth and save chip area, compact transformers with various coupling coefficients are employed to design the input, interstage, and output impedance-matching networks. The VGA is demonstrated by using a 65-nm CMOS process. According to the measurement results, the circuit achieves a peak gain of 12 dB with a 3-dB gain bandwidth of 15.8 GHz. Its fractional bandwidth is up to 52.8%. The tested root-mean-square phase and gain errors of the proposed VGA are lower than 1.2(degrees) and 0.1 dB across 24-38 GHz, respectively.
引用
收藏
页码:757 / 760
页数:4
相关论文
共 50 条
  • [31] Design of a High Gain Power Amplifier for 77 GHz Radar Automotive Applications in 65-nm CMOS
    Hoa Thai Duong
    Hoang Viet Le
    Anh Trong Huynh
    Evans, Robin John
    Skafidas, Efstratios
    2013 8TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC), 2013, : 65 - 68
  • [32] A 60 GHz transformer-based variable-gain power amplifier in 90nm CMOS
    Brinkhoff, James
    Kang, Kai
    Duy-Dong Pham
    Lin, Fujiang
    2009 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT 2009), 2009, : 304 - 307
  • [33] A 60-GHz Phase-Invariant Variable Gain LNA With T/R Switch and Gain Interpolation Techniques in 65-nm CMOS
    Chen, Xin
    Cheng, Depeng
    Ma, Xujun
    Feng, Jing
    Chen, Qin
    Wu, Xu
    Fan, Xiangning
    Li, Lianming
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2024, 34 (05): : 508 - 511
  • [34] E-band broadband digital controlled phase-inverting variable gain amplifier in 65-nm CMOS
    Feng, Yikun
    Zhao, Dixian
    ELECTRONICS LETTERS, 2021, 57 (04) : 179 - 182
  • [35] Low-noise variable-gain amplifier in 90-nm CMOS for TV on mobile
    Tripodi, Lorenzo
    Brekelmans, Hans
    ESSCIRC 2007: PROCEEDINGS OF THE 33RD EUROPEAN SOLID-STATE CIRCUITS CONFERENCE, 2007, : 368 - +
  • [36] A 28-GHz Variable Gain Amplifier with Low Phase Variation in 90-nm CMOS
    Kuo, Chien-Nan
    Chou, Ting-Yi
    2020 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT), 2020, : 157 - 159
  • [37] A 109 GHz CMOS Power Amplifier With 15.2 dBm Psat and 20.3 dB Gain in 65-nm CMOS Technology
    Son, Hyuk Su
    Jang, Joo Young
    Kang, Dong Min
    Lee, Hae Jin
    Park, Chul Soon
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (07) : 510 - 512
  • [38] A Broadband Variable-Gain Low-Noise Amplifier With Low NF and Dual Phase Compensation
    Wang, Ruitao
    Li, Chenguang
    Wang, Yan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (09) : 4086 - 4090
  • [39] A 57-66 GHz Power Amplifier with a Linearization Technique in 65-nm CMOS Process
    Yeh, Jin-Fu
    Cheng, Jen-Hao
    Tsai, Jeng-Han
    Huang, Tian-Wei
    2014 9TH EUROPEAN MICROWAVE INTEGRATED CIRCUIT CONFERENCE (EUMIC), 2014, : 309 - 312
  • [40] A 57-66 GHz Power Amplifier with a Linearization Technique in 65-nm CMOS Process
    Yeh, Jin-Fu
    Cheng, Jen-Hao
    Tsai, Jeng-Han
    Huang, Tian-Wei
    2014 44TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2014, : 1253 - 1256