A 22-to-37.8-GHz Low-Gain-Phase-Error Variable-Gain Amplifier With Impedance-Compensation Technique in 65-nm CMOS Process

被引:2
|
作者
Yu, Yiming [1 ,2 ]
Geng, Mengqian [3 ]
Peng, Sirui [3 ]
Li, Junfeng [3 ]
Zhao, Chenxi [3 ]
Liu, Huihua [3 ]
Wu, Yunqiu [3 ]
Kang, Kai [3 ]
机构
[1] Univ Elect Sci & Technol China UESTC, Sch Elect Engn, Chengdu 611731, Peoples R China
[2] UESTC, Chengdu Res Inst, Chengdu 610207, Peoples R China
[3] UESTC, Sch Elect Engn, Chengdu 611731, Peoples R China
来源
IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS | 2024年 / 34卷 / 06期
基金
中国国家自然科学基金;
关键词
Gain; Wideband; Tuning; Circuits; Logic gates; Impedance; Varactors; CMOS; impedance-compensation technique; transformer; variable-gain amplifier (VGA); wideband;
D O I
10.1109/LMWT.2024.3382588
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a wideband variable-gain amplifier (VGA) with an impedance-compensation technique for 5G new radio. To minimize the gain and phase errors of a millimeter-wave VGA in a wide frequency band, a parasitic-capacitance-compensation method based on varactors is proposed to alleviate the input impedance variation of a cross-coupled structure. To extend gain bandwidth and save chip area, compact transformers with various coupling coefficients are employed to design the input, interstage, and output impedance-matching networks. The VGA is demonstrated by using a 65-nm CMOS process. According to the measurement results, the circuit achieves a peak gain of 12 dB with a 3-dB gain bandwidth of 15.8 GHz. Its fractional bandwidth is up to 52.8%. The tested root-mean-square phase and gain errors of the proposed VGA are lower than 1.2(degrees) and 0.1 dB across 24-38 GHz, respectively.
引用
收藏
页码:757 / 760
页数:4
相关论文
共 50 条
  • [11] A 17-to-24 GHz Low-Power Variable-Gain Low-Noise Amplifier in 65-nm CMOS for Phased-Array Receivers
    Yaghoobi, Majid
    Yavari, Mohammad
    Ghafoorifard, Hassan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (12) : 5448 - 5466
  • [12] A miniaturized 35 GHz 65-nm CMOS digital-controlled differential variable gain amplifier
    Cheng, Wei-Chung
    Tsai, Zuo-Min
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2022, 64 (01) : 90 - 96
  • [13] A K-Band Variable Gain Low-Noise Amplifier with Low Phase Variation in 65-nm CMOS
    Cheng, Depeng
    Li, Lianming
    Xie, Min
    Wu, Xu
    He, Long
    Sheng, Bin
    2021 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS 2021), 2021,
  • [14] A 60 GHz Cascode Variable-Gain Low-Noise Amplifier With Phase Compensation in a 0.13 μm CMOS Technology
    Kim, Youngmin
    Kwon, Youngwoo
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (07) : 372 - 374
  • [15] A 18-27 GHz Programmable Gain Amplifier in 65-nm CMOS technology
    del Rio Bueno, C.
    Esteban Eraso, U.
    Sanchez-Azqueta, C.
    Celma, S.
    PROCEEDINGS OF THE 2022 IFIP/IEEE 30TH INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION (VLSI-SOC), 2022,
  • [16] Design of a 39-GHz compact bi-directional variable gain amplifier in 65-nm CMOS
    Chen, Xin
    Cheng, Depeng
    Zhang, Tao
    Chen, Qin
    Feng, Jing
    Wu, Xu
    Fan, Xiangning
    Li, Lianming
    MICROELECTRONICS JOURNAL, 2023, 142
  • [17] An 8–18 GHz power amplifier with novel gain fluctuation compensation technique in 65 nm CMOS
    Jie Gong
    Wei Li
    Jintao Hu
    Jiao Ye
    Tao Wang
    Journal of Semiconductors, 2018, 39 (12) : 207 - 213
  • [18] An 8–18 GHz power amplifier with novel gain fluctuation compensation technique in 65 nm CMOS
    Jie Gong
    Wei Li
    Jintao Hu
    Jiao Ye
    Tao Wang
    Journal of Semiconductors, 2018, (12) : 207 - 213
  • [19] Cell-based Wideband Variable-Gain Amplifier with Accurate Gain Adjustment in 65 nm CMOS Technology
    Zhu, X.
    Yang, Y.
    Liu, H.
    2016 IEEE INTERNATIONAL WORKSHOP ON ELECTROMAGNETICS: APPLICATIONS AND STUDENT INNOVATION COMPETITION (IWEM), 2016,
  • [20] A 68.1-to-96.4GHz Variable-Gain Low-Noise Amplifier in 28nm CMOS
    Vigilante, Marco
    Reynaert, Patrick
    2016 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2016, 59 : 360 - U504