Security-aware energy-efficient design for mobile edge computing network operating with finite blocklength codes

被引:1
作者
Shi, Chenhao [1 ]
Hu, Yulin [1 ,2 ]
Zhu, Yao [1 ,2 ]
Schmeink, Anke [2 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Wuhan 430000, Hubei, Peoples R China
[2] Rhein Westfal TH Aachen, Chair Informat Theory & Data Analyt, D-52068 Aachen, Germany
关键词
Edge computing; Finite blocklength regime; Retransmission; Physical layer security; PHYSICAL LAYER SECURITY; URLLC;
D O I
10.1186/s13638-024-02395-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Energy efficiency and physical-layer security are crucial considerations in the advancement of mobile edge computing systems. This paper addresses the trade-off between secure-reliability and energy consumption in finite blocklength (FBL) communications. Specifically, we examine a three-node scenario involving a user, a legitimate edge computing server, and an eavesdropper, where the user offloads sensitive data to the edge server while facing potential eavesdropping threats. We propose an optimization framework aimed at minimizing energy consumption while ensuring secure-reliability by decomposing the problem into manageable subproblems. By demonstrating the convexity of the objective function concerning the variables, we establish the existence of an optimal parameter selection for the problem. This implies that practical optimization of parameters can significantly enhance system performance. Our numerical results demonstrate that the application of FBL regime and retransmission mechanism can effectively reduce the energy consumption of the system while ensuring secure-reliability. For the quantitative analyses, the retransmission mechanism is 33.1% better than no retransmission, and the FBL regime is 13.1% better than infinite blocklength (IBL) coding.
引用
收藏
页数:26
相关论文
共 30 条
[21]   A Mobile Edge Computing Model Enabling Efficient Computation Offload-Aware Energy Conservation [J].
Mavromoustakis, Constandinos X. ;
Mastorakis, George ;
Batalla, Jordi Mongay .
IEEE ACCESS, 2019, 7 :102295-102303
[22]   Chimera: An Energy-Efficient and Deadline-Aware Hybrid Edge Computing Framework for Vehicular Crowdsensing Applications [J].
Pu, Lingjun ;
Chen, Xu ;
Mao, Guoqiang ;
Xie, Qinyi ;
Xu, Jingdong .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (01) :84-99
[23]   Mobile-Kube: Mobility-aware and Energy-efficient Service Orchestration on Kubernetes Edge Servers [J].
Ghafouri, Saeid ;
Karami, Alireza ;
Bakhtiarvan, Danial Bidekani ;
Bigdeli, Aliakbar Saleh ;
Gill, Sukhpal Singh ;
Doyle, Joseph .
2022 IEEE/ACM 15TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING, UCC, 2022, :82-91
[24]   Energy-Efficient Non-Orthogonal Multiple Access for Downlink Communication in Mobile Edge Computing Systems [J].
Zhang, Lin ;
Fang, Furong ;
Huang, Guixun ;
Chen, Yawen ;
Zhang, Haibo ;
Jiang, Yuan ;
Ma, Weibin .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (12) :4310-4322
[25]   Energy-Efficient Joint Trajectory and Reflecting Design in IRS-Enabled UAV Edge Computing [J].
Huang, Zhenqi ;
Kuang, Zhufang ;
Lin, Siyu ;
Hou, Fen ;
Liu, Anfeng .
IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12) :21872-21884
[26]   Secrecy-Based Energy-Efficient Mobile Edge Computing via Cooperative Non-Orthogonal Multiple Access Transmission [J].
Qian, Liping ;
Wu, Weicong ;
Lu, Weidang ;
Wu, Yuan ;
Lin, Bin ;
Quek, Tony Q. S. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (07) :4659-4677
[27]   A Novel Energy-Efficient Reservation System for Edge Computing in 6G Vehicular Ad Hoc Network [J].
Javed, Farhan ;
Khan, Zuhaib Ashfaq ;
Rizwan, Shahzad ;
Shahzadi, Sonia ;
Chaudhry, Nauman Riaz ;
Iqbal, Muddesar .
SENSORS, 2023, 23 (13)
[28]   Designing a multi-layer edge-computing platform for energy-efficient and delay-aware offloading in vehicular networks [J].
Busacca, Fabio ;
Faraci, Giuseppe ;
Grasso, Christian ;
Palazzo, Sergio ;
Schembra, Giovanni .
COMPUTER NETWORKS, 2021, 198
[29]   An energy-efficient and accuracy-aware edge computing framework for heart arrhythmia detection: A joint model selection and task offloading approach [J].
Vahid Amini ;
Mahmoud Momtazpour ;
Morteza Saheb Zamani .
The Journal of Supercomputing, 2023, 79 :8178-8204
[30]   An energy-efficient and accuracy-aware edge computing framework for heart arrhythmia detection: A joint model selection and task offloading approach [J].
Amini, Vahid ;
Momtazpour, Mahmoud ;
Zamani, Morteza Saheb .
JOURNAL OF SUPERCOMPUTING, 2023, 79 (08) :8178-8204