Segmented fluorescence correlation spectroscopy (FCS) on a commercial laser scanning microscope

被引:0
作者
Longo, Elisa [1 ]
Scalisi, Silvia [1 ]
Lanzano, Luca [1 ,2 ]
机构
[1] Univ Catania, Dept Phys & Astron Ettore Majorana, Via S Sofia, 64, I-95123 Catania, Italy
[2] Ist Italiano Tecnol, Nanoscopy, CHT Erzelli, Genoa, Italy
关键词
Fluorescence correlation spectroscopy (FCS); Confocal laser scanning microscope (CLSM); Segmented FCS; Diffusion coefficient; GFP; PARP1; MEMBRANE DYNAMICS; LIVE CELLS; DIFFUSION;
D O I
10.1038/s41598-024-68317-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Performing accurate Fluorescence Correlation Spectroscopy (FCS) measurements in cells can be challenging due to cellular motion or other intracellular processes. In this respect, it has recently been shown that analysis of FCS data in short temporal segments (segmented FCS) can be very useful to increase the accuracy of FCS measurements inside cells. Here, we demonstrate that segmented FCS can be performed on a commercial laser scanning microscope (LSM), even in the absence of the dedicated FCS module. We show how data can be acquired on a Leica SP8 confocal microscope and then exported and processed with a custom software in MATLAB. The software performs segmentation of the data to extract an average ACF and measure the diffusion coefficient in specific subcellular regions. First of all, we measure the diffusion of fluorophores of different size in solution, to show that good-quality ACFs can be obtained in a commercial LSM. Next, we validate the method by measuring the diffusion coefficient of GFP in the nucleus of HeLa cells, exploiting variations of the intensity to distinguish between nucleoplasm and nucleolus. As expected, the measured diffusion coefficient of GFP is slower in the nucleolus relative to nucleoplasm. Finally, we apply the method to HeLa cells expressing a PARP1 chromobody to measure the diffusion coefficient of PARP1 in different subcellular regions. We find that PARP1 diffusion is slower in the nucleolus compared to the nucleoplasm.
引用
收藏
页数:10
相关论文
共 37 条
[11]   Pulsed interleaved excitation-based line-scanning spatial correlation spectroscopy (PIE-IsSCS) [J].
Gao, Xiang ;
Gao, Peng ;
Prunsche, Benedikt ;
Nienhaus, Karin ;
Nienhaus, Gerd Ulrich .
SCIENTIFIC REPORTS, 2018, 8
[12]   Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy [J].
Groener, Nadine ;
Capoulade, Jeremie ;
Cremer, Christoph ;
Wachsmuth, Malte .
OPTICS EXPRESS, 2010, 18 (20) :21225-21237
[13]   PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites [J].
Haince, Jean-Francois ;
McDonald, Darin ;
Rodrigue, Amelie ;
Dery, Ugo ;
Masson, Jean-Yves ;
Hendzel, Michael J. ;
Poirier, Guy G. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (02) :1197-1208
[14]   Spatiotemporal image correlation Spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells [J].
Hebert, B ;
Costantino, S ;
Wiseman, PW .
BIOPHYSICAL JOURNAL, 2005, 88 (05) :3601-3614
[15]   Arbitrary-Region Raster Image Correlation Spectroscopy [J].
Hendrix, Jelle ;
Dekens, Tomas ;
Schrimpf, Waldemar ;
Lamb, Don C. .
BIOPHYSICAL JOURNAL, 2016, 111 (08) :1785-1796
[16]   In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNA-dependent molecular flow [J].
Hinde, Elizabeth ;
Cardarelli, Francesco ;
Digman, Michelle A. ;
Gratton, Enrico .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (38) :16560-16565
[17]   Quantitative analysis of biochemical processes in living cells at a single-molecule level: a case of olaparib-PARP1 (DNA repair protein) interactions [J].
Karpinska, Aneta ;
Pilz, Marta ;
Buczkowska, Joanna ;
Zuk, Pawel J. ;
Kucharska, Karolina ;
Magiera, Gawel ;
Kwapiszewska, Karina ;
Holyst, Robert .
ANALYST, 2021, 146 (23) :7131-7143
[18]   Autocorrelation function of finite-length data in fluorescence correlation spectroscopy [J].
Kohler, John ;
Hur, Kwang-Ho ;
Mueller, Joachim Dieter .
BIOPHYSICAL JOURNAL, 2023, 122 (01) :241-253
[19]   Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms [J].
Krieger, Jan W. ;
Singh, Anand P. ;
Bag, Nirmalya ;
Garbe, Christoph S. ;
Saunders, Timothy E. ;
Langowski, Joerg ;
Wohland, Thorsten .
NATURE PROTOCOLS, 2015, 10 (12) :1948-1974
[20]   Back to the Future: Fluorescence Correlation Spectroscopy Moves Back in the Cuvette [J].
Lanzano, Luca .
BIOPHYSICAL JOURNAL, 2018, 115 (03) :427-428