The Solutions of the Diophantine Equations px

被引:0
|
作者
Tadee, Suton [1 ]
机构
[1] Thepsatri Rajabhat Univ, Dept Math, Fac Sci & Technol, Lop Buri 15000, Thailand
来源
INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE | 2024年 / 19卷 / 03期
关键词
Diophantine equation; Mihailescu's Theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p and q be prime numbers. In this article, we show that all nonnegative integer solutions of the Diophantine equation p(x)+p(y) = z(q) are (p, q, x, y, z) = (2, q, qt+q-1, qt+q-1, 2(t+1)), (2(q) -1, q, qt+ 1, qt, 2(2(q) - negative integer solutions of the Diophantine equation p(x) - p(y) = z(q) are (p, q, x, y, z) = (p, q, t, t, 0), (2, q, qt + 1, qt, 2(t)), (4v(2) + 1, 2, 2t + 1, 2t, 2v(4v(2) + 1)(t)), (3,3,3t + 2,3t, 2 center dot 3(t)), where t is a non-negative integer and v is a positive integer.
引用
收藏
页码:621 / 623
页数:3
相关论文
共 50 条
  • [41] On the solvability of a class of diophantine equations and applications
    Ibarra, OH
    Dang, Z
    THEORETICAL COMPUTER SCIENCE, 2006, 352 (1-3) : 342 - 346
  • [42] UPPER BOUNDS FOR THE NUMBER OF SOLUTIONS FOR THE DIOPHANTINE EQUATION y2 = px(Ax2 - C) (C=2, ±1, ±4)
    Bencherif, Farid
    Boumahdi, Rachid
    Garici, Tarek
    Schedler, Zak
    COLLOQUIUM MATHEMATICUM, 2020, 159 (02) : 243 - 257
  • [43] ON A CLASS OF SOLUTIONS FOR A QUADRATIC DIOPHANTINE EQUATION
    Somanath, Manju
    Raja, K.
    Kannan, J.
    Mahalakshmi, M.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2020, 19 (11): : 1097 - 1103
  • [44] On the integer solutions of the Diophantine equations z2 = f(x)2 ± f(y)2
    Zhang, Yong
    Tang, Qiongzhi
    PERIODICA MATHEMATICA HUNGARICA, 2022, 85 (02) : 369 - 379
  • [45] Integer Solutions of a Special Diophantine Equation
    Ozkoc, Arzu
    Tekcan, Ahmet
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [46] ELLIPTIC DIVISIBILITY SEQUENCES AND CERTAIN DIOPHANTINE EQUATIONS
    Yabuta, Minoru
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (04) : 1339 - 1352
  • [47] Diophantine equations with at most one positive solution
    Mihai Cipu
    manuscripta mathematica, 1997, 93 : 349 - 356
  • [48] On counter machines, reachability problems, and diophantine equations
    Ibarra, Oscar H.
    Dang, Zhe
    Yang, Linmin
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2008, 19 (04) : 919 - 934
  • [49] Unsolvability of Two Diophantine Equations of the Form pa
    Gayo Jr, William S.
    Siong, Venus D.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1143 - 1145
  • [50] On two Diophantine equations 2A(6)
    Jena, Susil Kumar
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (02) : 29 - 34