Existence of solutions to a strongly nonlinear elliptic coupled system of finite order

被引:1
|
作者
Lahrache, Manar [1 ]
Rhoudaf, Mohamed [1 ]
Talbi, Hajar [1 ]
机构
[1] Moulay Ismail Univ, Fac Sci, Lab Math & Their Interact, BP 11201, Meknes, Morocco
关键词
Sobolev spaces of finite order; Coupled system; Capacity solution; Weak solution; Nonlinear elliptic equation; Degenerate problem; Thermistor problem; CAPACITY SOLUTION;
D O I
10.1007/s43036-024-00350-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of a capacity solution to the strongly nonlinear degenerate problem, namely, H(theta)+g(x,theta)=sigma(theta)|del psi|2,div(sigma(theta)del psi)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\theta )+g(x,\theta )=\sigma (\theta )|\nabla \psi |<^>{2}, {\text {div}}(\sigma (\theta ) \nabla \psi )=0$$\end{document} in Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} where g(x,theta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x,\theta )$$\end{document} is a lower order term satisfies the sign condition but without any restriction on its growth and the operator H is of the form H(theta)=& sum;|nu|=0r(-1)|nu|D nu h nu x,D gamma theta,|gamma|<=|nu|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} H (\theta )=\sum _{|\nu |=0}<^>{r}(-1)<^>{|\nu |} D<^>\nu \left( h_\nu \left( x, D<^>\gamma \theta \right) \right) , \quad |\gamma | \le |\nu |, \end{aligned}$$\end{document}is proved in the framework of Sobolev space of finite order.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Existence of Weak Solutions to an Elliptic-Parabolic Equation with Variable Order of Nonlinearity
    Mukminov F.K.
    Andriyanova E.R.
    Journal of Mathematical Sciences, 2019, 241 (3) : 290 - 305
  • [42] Existence and uniqueness of solutions of nonlinear elliptic equations without growth conditions at infinity
    Salomón Alarcón
    Jorge García-Melián
    Alexander Quaas
    Journal d'Analyse Mathématique, 2012, 118 : 83 - 104
  • [43] Positive Solutions for an Iterative System of Nonlinear Elliptic Equations
    Mahammad Khuddush
    K. Rajendra Prasad
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 245 - 272
  • [44] Capacity Solution to a Nonlinear Elliptic Coupled System in Orlicz-Sobolev Spaces
    Moussa, H.
    Ortegon Gallego, F.
    Rhoudaf, M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [45] Positive Solutions for an Iterative System of Nonlinear Elliptic Equations
    Khuddush, Mahammad
    Prasad, K. Rajendra
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) : 245 - 272
  • [46] Capacity solution to a coupled system of parabolic–elliptic equations in Orlicz–Sobolev spaces
    H. Moussa
    F. Ortegón Gallego
    M. Rhoudaf
    Nonlinear Differential Equations and Applications NoDEA, 2018, 25
  • [47] Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order
    Manigandan, M.
    Muthaiah, Subramanian
    Nandhagopal, T.
    Vadivel, R.
    Unyong, B.
    Gunasekaran, N.
    AIMS MATHEMATICS, 2022, 7 (01): : 723 - 755
  • [48] Renormalized solutions to a nonlinear parabolic-elliptic system
    Montesinos, MTG
    Gallego, FO
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) : 1991 - 2003
  • [49] Multiplicity of solutions and source terms in a fourth order nonlinear elliptic equation
    Q-Heung, C
    Tacksun, J
    ACTA MATHEMATICA SCIENTIA, 1999, 19 (04) : 361 - 374
  • [50] Existence and uniqueness of solutions for a coupled system of nonlinear fractional differential equations with fractional integral boundary conditions
    Zhang, Haiyan
    Li, Yaohong
    Lu, Wei
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2434 - 2447