Existence of solutions to a strongly nonlinear elliptic coupled system of finite order

被引:1
|
作者
Lahrache, Manar [1 ]
Rhoudaf, Mohamed [1 ]
Talbi, Hajar [1 ]
机构
[1] Moulay Ismail Univ, Fac Sci, Lab Math & Their Interact, BP 11201, Meknes, Morocco
关键词
Sobolev spaces of finite order; Coupled system; Capacity solution; Weak solution; Nonlinear elliptic equation; Degenerate problem; Thermistor problem; CAPACITY SOLUTION;
D O I
10.1007/s43036-024-00350-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of a capacity solution to the strongly nonlinear degenerate problem, namely, H(theta)+g(x,theta)=sigma(theta)|del psi|2,div(sigma(theta)del psi)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\theta )+g(x,\theta )=\sigma (\theta )|\nabla \psi |<^>{2}, {\text {div}}(\sigma (\theta ) \nabla \psi )=0$$\end{document} in Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} where g(x,theta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x,\theta )$$\end{document} is a lower order term satisfies the sign condition but without any restriction on its growth and the operator H is of the form H(theta)=& sum;|nu|=0r(-1)|nu|D nu h nu x,D gamma theta,|gamma|<=|nu|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} H (\theta )=\sum _{|\nu |=0}<^>{r}(-1)<^>{|\nu |} D<^>\nu \left( h_\nu \left( x, D<^>\gamma \theta \right) \right) , \quad |\gamma | \le |\nu |, \end{aligned}$$\end{document}is proved in the framework of Sobolev space of finite order.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Existence of solutions to a strongly nonlinear parabolic-elliptic coupled system of infinite order
    Chahboune, Manar
    Rhoudaf, Mohamed
    Talbi, Hajar
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (10)
  • [2] Increase of power leads to a bilateral solution to a strongly nonlinear elliptic coupled system
    Ortegon Gallego, Francisco
    Rhoudaf, Mohamed
    Talbi, Hajar
    ADVANCED NONLINEAR STUDIES, 2024, 24 (03) : 637 - 656
  • [3] Existence of Weak Solutions for a Nonlinear Elliptic System
    Ming Fang
    Robert P Gilbert
    Boundary Value Problems, 2009
  • [4] Existence of a capacity solution to a nonlinear parabolic-elliptic coupled system in anisotropic Orlicz-Sobolev spaces
    Gallego, Francisco Ortegon
    Ouyahya, Hakima
    Rhoudaf, Mohamed
    RESULTS IN APPLIED MATHEMATICS, 2023, 18
  • [5] Existence and uniqueness of weak periodic solutions for a coupled parabolic-elliptic system
    Elmassoudi, Mhamed
    Ahakkoud, Yassine
    Bennouna, Jaouad
    CARPATHIAN JOURNAL OF MATHEMATICS, 2023, 39 (03) : 641 - 657
  • [6] WEAK SOLUTIONS FOR A STRONGLY-COUPLED NONLINEAR SYSTEM
    Lima, Osmundo A.
    Louredo, Aldo T.
    Marinho, Alexandro O.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [7] EXISTENCE OF SOLUTIONS TO SECOND-ORDER NONLINEAR COUPLED SYSTEMS WITH NONLINEAR COUPLED BOUNDARY CONDITIONS
    Talib, Imran
    Asif, Naseer Ahmad
    Tunc, Cemil
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [8] EXISTENCE OF A SOLUTION AND ITS NUMERICAL APPROXIMATION FOR A STRONGLY NONLINEAR COUPLED SYSTEM IN ANISOTROPIC ORLICZ-SOBOLEV SPACES
    Gallego, Francisco Ortegon
    Ouyahya, Hakima
    Rhoudaf, Mohamed
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (84)
  • [9] Existence and Hyers-Ulam stability of solutions to a nonlinear implicit coupled system of fractional order
    Zada, Akbar
    Ali, Asfandyar
    Riaz, Usman
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (07) : 2513 - 2528
  • [10] Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system
    Gonzalez Montesinos, Maria Teresa
    Ortegon Gallego, Francisco
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (01) : 23 - 42