Global well-posedness and large time behavior for the inviscid Oldroyd-B model

被引:0
作者
Ye, Weikui [1 ]
Zhao, Bin [2 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Oldroyd-B model; Global existence; Stability; Weissenberg number; Decay; EQUATIONS;
D O I
10.1016/j.nonrwa.2024.104105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the 3-dimensional incompressible inviscid Oldroyd-B model. Firstly, we establish the global existence of the solutions for the inviscid Oldroyd-B model with different coupling coefficient k > 0. Then, we show the connection between the solution with the parameter k that is the reciprocal of Weissenberg number. On one hand, we prove that the solutions (u, tau) depend continuously on the parameter k > 0, though (u, tau) corresponds to different decays rate for different k. On the other hand, when k -> 0 in large time, we prove that there is a gap between the L-2 norm of solution u(k)(t, x) to the model of parameter k > 0 with the L-2 norm of solution u(0)(t, x) to the model of parameter k = 0. In a word, we prove that the larger positive k induces the faster decay rate of the solution, but k cannot go to zero, or the dissipation will vanish instantly.
引用
收藏
页数:15
相关论文
共 24 条
[11]  
Deng WJ, 2023, Arxiv, DOI arXiv:2107.12029
[12]   Global Regularity for Some Oldroyd-B Type Models [J].
Elgindi, Tarek M. ;
Rousset, Frederic .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (11) :2005-2021
[13]   Global wellposedness to the generalized Oldroyd type models in R3 [J].
Elgindi, Tarek M. ;
Liu, Jianli .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) :1958-1966
[14]  
Hu D, 2007, COMMUN MATH SCI, V5, P909, DOI 10.4310/CMS.2007.v5.n4.a9
[15]  
Lions PL, 2000, CHINESE ANN MATH B, V21, P131, DOI 10.1142/S0252959900000170
[16]  
Luo ZA, 2020, Arxiv, DOI arXiv:2010.15409
[17]  
Luo ZA, 2022, Arxiv, DOI arXiv:2110.12330
[18]   NON-NEWTONIAN EFFECTS IN STEADY MOTION OF SOME IDEALIZED ELASTICO-VISCOUS LIQUIDS [J].
OLDROYD, JG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 245 (1241) :278-297
[19]   REMARKS ON AXISYMMETRICAL SOLUTIONS OF THE INCOMPRESSIBLE EULER SYSTEM [J].
SAINTRAYMOND, X .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (1-2) :321-334
[20]   Sharp decay estimates for Oldroyd-B model with only fractional stress tensor diffusion [J].
Wang, Peixin ;
Wu, Jiahong ;
Xu, Xiaojing ;
Zhong, Yueyuan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (04)