Global well-posedness and large time behavior for the inviscid Oldroyd-B model

被引:0
作者
Ye, Weikui [1 ]
Zhao, Bin [2 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Oldroyd-B model; Global existence; Stability; Weissenberg number; Decay; EQUATIONS;
D O I
10.1016/j.nonrwa.2024.104105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the 3-dimensional incompressible inviscid Oldroyd-B model. Firstly, we establish the global existence of the solutions for the inviscid Oldroyd-B model with different coupling coefficient k > 0. Then, we show the connection between the solution with the parameter k that is the reciprocal of Weissenberg number. On one hand, we prove that the solutions (u, tau) depend continuously on the parameter k > 0, though (u, tau) corresponds to different decays rate for different k. On the other hand, when k -> 0 in large time, we prove that there is a gap between the L-2 norm of solution u(k)(t, x) to the model of parameter k > 0 with the L-2 norm of solution u(0)(t, x) to the model of parameter k = 0. In a word, we prove that the larger positive k induces the faster decay rate of the solution, but k cannot go to zero, or the dissipation will vanish instantly.
引用
收藏
页数:15
相关论文
共 24 条
[1]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[2]  
Bird R. B., 1987, Fluid Mechanics, V1
[3]   A Global Existence Result for the Compressible Navier-Stokes Equations in the Critical Lp Framework [J].
Charve, Frederic ;
Danchin, Raphael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :233-271
[4]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[5]   About lifespan of regular solutions of equations related to viscoelastic fluids [J].
Chemin, JY ;
Masmoudi, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :84-112
[6]   Global Well-Posedness in the Critical Besov Spaces for the Incompressible Oldroyd-B Model Without Damping Mechanism [J].
Chen, Qionglei ;
Hao, Xiaonan .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (03)
[7]  
Chen QL, 2010, COMMUN PUR APPL MATH, V63, P1173
[8]   High Reynolds number and high Weissenberg number Oldroyd-B model with dissipation [J].
Constantin, Peter ;
Wu, Jiahong ;
Zhao, Jiefeng ;
Zhu, Yi .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) :2787-2806
[9]   Note on Global Regularity for Two-Dimensional Oldroyd-B Fluids with Diffusive Stress [J].
Constantin, Peter ;
Kliegl, Markus .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (03) :725-740
[10]   Global existence in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
INVENTIONES MATHEMATICAE, 2000, 141 (03) :579-614