On spectral eigenmatrix problem for the planar self-affine measures with three digits

被引:0
作者
Liu, Jing-Cheng [1 ]
Liu, Ming [1 ]
Tang, Min-Wei [1 ]
Wu, Sha [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
[2] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-affine measure; Spectral measure; Spectrum structure; Spectral eigenmatrix; EIGENVALUE PROBLEMS; PROPERTY;
D O I
10.1007/s43034-024-00386-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let mu M,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M,D}$$\end{document} be a self-affine measure generated by an iterated function systems {phi d(x)=M-1(x+d)(x is an element of R2)}d is an element of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\phi _d(x)=M<^>{-1}(x+d)\ (x\in \mathbb {R}<^>2)\}_{d\in D}$$\end{document}, where M is an element of M2(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\in M_2(\mathbb {Z})$$\end{document} is an expanding integer matrix and D={(0,0)t,(1,0)t,(0,1)t}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = \{(0,0)<^>t,(1,0)<^>t,(0,1)<^>t\}$$\end{document}. In this paper, we study the spectral eigenmatrix problem of mu M,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M,D}$$\end{document}, i.e., we characterize the matrix R which R Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\Lambda $$\end{document} is also a spectrum of mu M,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M,D}$$\end{document} for some spectrum Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}. Some necessary and sufficient conditions for R to be a spectral eigenmatrix are given, which extends some results of An et al. (Indiana Univ Math J, 7(1): 913-952, 2022). Moreover, we also find some irrational spectral eigenmatrices of mu M,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M,D}$$\end{document}, which is different from the known results that spectral eigenmatrices are rational.
引用
收藏
页数:22
相关论文
共 50 条
[21]   There are Four-Element Orthogonal Exponentials of Planar Self-affine Measures with Two Digits [J].
Saidi Wei ;
Min-Min Zhang .
Complex Analysis and Operator Theory, 2023, 17
[22]   Uniformity of spectral self-affine measures [J].
Deng, Qi-Rong ;
Chen, Jian-Bao .
ADVANCES IN MATHEMATICS, 2021, 380
[23]   The cardinality of orthogonal exponentials of planar self-affine measures with three-element digit sets [J].
Chen, Ming-Liang ;
Liu, Jing-Cheng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (01) :135-156
[24]   Spectral Self-Affine Measures on the Generalized Three Sierpinski Gasket [J].
YanBo Yuan .
Analysis in Theory and Applications, 2015, 31 (04) :394-406
[25]   FOURIER BASES OF A CLASS OF PLANAR SELF-AFFINE MEASURES [J].
Chen, Ming-Liang ;
Liu, Jing-Cheng ;
Wang, Zhi-Yong .
PACIFIC JOURNAL OF MATHEMATICS, 2023, 327 (01) :55-81
[26]   Spectral self-affine measures in RN [J].
Li, Jian-Lin .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2007, 50 :197-215
[27]   HADAMARD TRIPLES GENERATE SELF-AFFINE SPECTRAL MEASURES [J].
Dutkay, Dorin Ervin ;
Haussermann, John ;
Lai, Chun-Kit .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) :1439-1481
[28]   Tree structure of spectra of spectral self-affine measures [J].
Deng, Qi-Rong ;
Dong, Xin-Han ;
Li, Ming-Tian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (03) :937-957
[29]   Arbitrarily Sparse Spectra for Self-Affine Spectral Measures [J].
L.-X. An ;
C.-K. Lai .
Analysis Mathematica, 2023, 49 :19-42
[30]   SPECTRAL EIGENMATRIX OF THE PLANAR SPECTRAL MEASURES WITH FOUR ELEMENTS [J].
Li, S. -J. ;
Ai, W. -H. .
ANALYSIS MATHEMATICA, 2023, 49 (02) :545-562