On spectral eigenmatrix problem for the planar self-affine measures with three digits

被引:0
作者
Liu, Jing-Cheng [1 ]
Liu, Ming [1 ]
Tang, Min-Wei [1 ]
Wu, Sha [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
[2] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-affine measure; Spectral measure; Spectrum structure; Spectral eigenmatrix; EIGENVALUE PROBLEMS; PROPERTY;
D O I
10.1007/s43034-024-00386-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let mu M,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M,D}$$\end{document} be a self-affine measure generated by an iterated function systems {phi d(x)=M-1(x+d)(x is an element of R2)}d is an element of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\phi _d(x)=M<^>{-1}(x+d)\ (x\in \mathbb {R}<^>2)\}_{d\in D}$$\end{document}, where M is an element of M2(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\in M_2(\mathbb {Z})$$\end{document} is an expanding integer matrix and D={(0,0)t,(1,0)t,(0,1)t}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = \{(0,0)<^>t,(1,0)<^>t,(0,1)<^>t\}$$\end{document}. In this paper, we study the spectral eigenmatrix problem of mu M,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M,D}$$\end{document}, i.e., we characterize the matrix R which R Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\Lambda $$\end{document} is also a spectrum of mu M,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M,D}$$\end{document} for some spectrum Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}. Some necessary and sufficient conditions for R to be a spectral eigenmatrix are given, which extends some results of An et al. (Indiana Univ Math J, 7(1): 913-952, 2022). Moreover, we also find some irrational spectral eigenmatrices of mu M,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M,D}$$\end{document}, which is different from the known results that spectral eigenmatrices are rational.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Uniformity of spectral self-affine measures
    Deng, Qi-Rong
    Chen, Jian-Bao
    ADVANCES IN MATHEMATICS, 2021, 380
  • [22] The cardinality of orthogonal exponentials of planar self-affine measures with three-element digit sets
    Chen, Ming-Liang
    Liu, Jing-Cheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (01) : 135 - 156
  • [23] Spectral Self-Affine Measures on the Generalized Three Sierpinski Gasket
    Yan-Bo Yuan
    AnalysisinTheoryandApplications, 2015, 31 (04) : 394 - 406
  • [24] FOURIER BASES OF A CLASS OF PLANAR SELF-AFFINE MEASURES
    Chen, Ming-Liang
    Liu, Jing-Cheng
    Wang, Zhi-Yong
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 327 (01) : 55 - 81
  • [25] Spectral self-affine measures in RN
    Li, Jian-Lin
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2007, 50 : 197 - 215
  • [26] HADAMARD TRIPLES GENERATE SELF-AFFINE SPECTRAL MEASURES
    Dutkay, Dorin Ervin
    Haussermann, John
    Lai, Chun-Kit
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) : 1439 - 1481
  • [27] Arbitrarily Sparse Spectra for Self-Affine Spectral Measures
    L.-X. An
    C.-K. Lai
    Analysis Mathematica, 2023, 49 : 19 - 42
  • [28] Tree structure of spectra of spectral self-affine measures
    Deng, Qi-Rong
    Dong, Xin-Han
    Li, Ming-Tian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (03) : 937 - 957
  • [29] SPECTRAL EIGENMATRIX OF THE PLANAR SPECTRAL MEASURES WITH FOUR ELEMENTS
    Li, S. -J.
    Ai, W. -H.
    ANALYSIS MATHEMATICA, 2023, 49 (02) : 545 - 562
  • [30] Spectral eigenmatrix of the planar spectral measures with four elements
    S.-J. Li
    W.-H. Ai
    Analysis Mathematica, 2023, 49 (2) : 545 - 562