Understanding of Förster Resonance Energy Transfer (FRET) in Ionic Materials

被引:9
|
作者
Jalihal, Amanda [1 ]
Le, Thuy [1 ]
Macchi, Samantha [1 ]
Krehbiel, Hannah [1 ]
Bashiru, Mujeebat [1 ]
Forson, Mavis [1 ]
Siraj, Noureen [1 ]
机构
[1] Univ Arkansas Little Rock, Dept Chem, 2801 S Univ Ave, Little Rock, AR 72204 USA
来源
SUSTAINABLE CHEMISTRY | 2021年 / 2卷 / 04期
关键词
ionic material; FRET; spectator ions; dye sensitized solar cell; near-infrared dyes; SENSITIZED SOLAR-CELLS; RELAY DYES; THERMAL-STABILITY; ENHANCEMENT; CONVERSION; EFFICIENCY; DESIGN;
D O I
10.3390/suschem2040031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, an ionic material (IM) with Forster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820-, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820- absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Forster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications.
引用
收藏
页码:564 / 575
页数:12
相关论文
共 50 条
  • [21] Light Harvesting Materials: A Study on Förster Resonance Energy Transfer and Optoelectronic Properties of Potential Nerium oleander Flowers
    Harshitha., D.
    Kumar, Anil
    Renuka, C. G.
    LUMINESCENCE, 2024, 39 (11)
  • [22] Pitfalls and limitations in the practical use of Förster’s theory of resonance energy transfer
    Silvia E. Braslavsky
    Eduard Fron
    Hernán B. Rodríguez
    Enrique San Román
    Gregory D. Scholes
    Gerd Schweitzer
    Bernard Valeur
    Jakob Wirz
    Photochemical & Photobiological Sciences, 2008, 7 : 1444 - 1448
  • [23] A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer
    Hideji Murakoshi
    Akihiro C. E. Shibata
    Yoshihisa Nakahata
    Junichi Nabekura
    Scientific Reports, 5
  • [24] Damage detection through Förster Resonance Energy Transfer in mechanoresponsive polymer nanocomposites
    Wang, Meng
    Schwindt, Alexandra
    Wu, Kedi
    Qin, Ying
    Kwan, Allison
    Tongay, Sefaattin
    Green, Matthew D.
    Polymer, 2021, 212
  • [25] Förster Resonance Energy Transfer and Harvesting in II–VI Fractional Monolayer Structures
    T. V. Shubina
    M. A. Semina
    K. G. Belyaev
    A. V. Rodina
    A. A. Toropov
    S. V. Ivanov
    Journal of Electronic Materials, 2017, 46 : 3922 - 3926
  • [26] Membrane microheterogeneity: Förster resonance energy transfer characterization of lateral membrane domains
    Luís M. S. Loura
    Fábio Fernandes
    Manuel Prieto
    European Biophysics Journal, 2010, 39 : 589 - 607
  • [27] Analysis of Nucleosome Structure in Polyacrylamide Gel by the Förster Resonance Energy Transfer Method
    Chertkov O.V.
    Valieva M.E.
    Malyuchenko N.V.
    Feofanov A.V.
    Moscow University Biological Sciences Bulletin, 2017, 72 (4) : 196 - 200
  • [28] Polymer bulk heterojunction solar cells employing Förster resonance energy transfer
    Huang J.-S.
    Goh T.
    Li X.
    Sfeir M.Y.
    Bielinski E.A.
    Tomasulo S.
    Lee M.L.
    Hazari N.
    Taylor A.D.
    Nature Photonics, 2013, 7 (6) : 479 - 485
  • [29] Purcell factors and F?rster-resonance energy transfer in proximity to helical structures
    Farhi, Asaf
    Dogariu, Aristide
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [30] Correction: Corrigendum: Screening for protein-protein interactions using Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM)
    Anca Margineanu
    Jia Jia Chan
    Douglas J. Kelly
    Sean C. Warren
    Delphine Flatters
    Sunil Kumar
    Matilda Katan
    Christopher W. Dunsby
    Paul M. W. French
    Scientific Reports, 6