Understanding of Förster Resonance Energy Transfer (FRET) in Ionic Materials

被引:9
|
作者
Jalihal, Amanda [1 ]
Le, Thuy [1 ]
Macchi, Samantha [1 ]
Krehbiel, Hannah [1 ]
Bashiru, Mujeebat [1 ]
Forson, Mavis [1 ]
Siraj, Noureen [1 ]
机构
[1] Univ Arkansas Little Rock, Dept Chem, 2801 S Univ Ave, Little Rock, AR 72204 USA
来源
SUSTAINABLE CHEMISTRY | 2021年 / 2卷 / 04期
关键词
ionic material; FRET; spectator ions; dye sensitized solar cell; near-infrared dyes; SENSITIZED SOLAR-CELLS; RELAY DYES; THERMAL-STABILITY; ENHANCEMENT; CONVERSION; EFFICIENCY; DESIGN;
D O I
10.3390/suschem2040031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, an ionic material (IM) with Forster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820-, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820- absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Forster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications.
引用
收藏
页码:564 / 575
页数:12
相关论文
共 50 条
  • [1] Paths to Förster’s resonance energy transfer (FRET) theory
    B.R. Masters
    The European Physical Journal H, 2014, 39 : 87 - 139
  • [2] Förster-type resonance energy transfer (FRET): Applications
    Demir H.V.
    Hernández Martínez P.L.
    Govorov A.
    SpringerBriefs in Applied Sciences and Technology, 2017, 0 (9789811018749): : 1 - 40
  • [3] Using Förster Resonance Energy Transfer (FRET) to Understand the Ubiquitination Landscape
    Gill, Jashanjot Kaur
    Shaw, Gary S.
    CHEMBIOCHEM, 2024, 25 (19)
  • [4] Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots
    Daniel Geißler
    Niko Hildebrandt
    Analytical and Bioanalytical Chemistry, 2016, 408 : 4475 - 4483
  • [5] Fluorescent antenna based on Förster resonance energy transfer (FRET) for optical wireless communications
    He, Cuiwei
    Ollins, Steve
    Murata, Hideyuki
    OPTICS EXPRESS, 2024, 32 (10): : 17152 - 17164
  • [6] Fluorescence resonance energy transfer (FRET) in chemistry and biology: Non-Förster distance dependence of the FRET rate
    Sangeeta Saini
    Harjinder Singh
    Biman Bagchi
    Journal of Chemical Sciences, 2006, 118 : 23 - 35
  • [7] FRET-Calc: A free software and web server for F?rster Resonance Energy Transfer Calculation
    Benatto, Leandro
    Mesquita, Omar
    Rosa, Joao L. B.
    Roman, Lucimara S.
    Koehler, Marlus
    Capaz, Rodrigo B.
    Candiotto, Graziani
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 287
  • [8] Photonic effects on the Förster resonance energy transfer efficiency
    Freddy T. Rabouw
    Stephan A. den Hartog
    Tim Senden
    Andries Meijerink
    Nature Communications, 5
  • [9] Bacterial detection based on Förster resonance energy transfer
    Zhang, Wanqing
    Li, Weiqiang
    Song, Yang
    Xu, Qian
    Xu, Hengyi
    Biosensors and Bioelectronics, 2024, 255
  • [10] Förster resonance energy transfer within the neomycin aptamer
    Hurter, Florian
    Halbritter, Anna-Lena J.
    Ahmad, Iram M.
    Braun, Markus
    Sigurdsson, Snorri Th.
    Wachtveitl, Josef
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (08) : 7157 - 7165