Compact Ring Signatures with Post-Quantum Security in Standard Model

被引:0
作者
Tuong Ngoc Nguyen [1 ]
Susilo, Willy [1 ]
Dung Hoang Duong [1 ]
Guo, Fuchun [1 ]
Fukushima, Kazuhide [2 ]
Kiyomoto, Shinsaku [2 ]
机构
[1] Univ Wollongong, Inst Cybersecur & Cryptol, Sch Comp & Informat Technol, Wollongong, NSW, Australia
[2] KDDI Res Inc, Informat Secur Lab, Fujimino, Japan
来源
INFORMATION SECURITY AND CRYPTOLOGY, INSCRYPT 2023, PT I | 2024年 / 14526卷
基金
澳大利亚研究理事会;
关键词
ring signatures; blind-unforgeability; post-quantum cryptography;
D O I
10.1007/978-981-97-0942-7_4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ring signatures allow a ring member to produce signatures on behalf of all ring users but remain anonymous. At PKC 2022, Chatterjee et al. defined post-quantum ring signatures with post-quantum anonymity and post-quantum blind-unforgeability. Assuming the hardness of the learning with errors problem, they proposed a generic construction that transforms any blind-unforgeable (BU) secure signature into a post-quantum ring signature in the standard model. However, the signature size grows linearly to the number of ring members. In this paper, we revisit the construction of Chatterjee et al. and present a compiler converting any BU secure signature into a compact (i.e., the signature size is logarithmically (or lower) dependent on the ring size) post-quantum ring signature in the standard model. Additionally, inspired by the work of Boneh et al. at CRYPTO 2013, we show how to transform any existentially unforgeable under a chosen message attack (EUF-CMA) secure signature into a BU secure signature. Hence, through our work, one can easily build a compact post-quantum ring signature in the standard model directly from any EUF-CMA secure signature.
引用
收藏
页码:65 / 84
页数:20
相关论文
共 20 条
[1]   Quantum-Access-Secure Message Authentication via Blind-Unforgeability [J].
Alagic, Gorjan ;
Majenz, Christian ;
Russell, Alexander ;
Song, Fang .
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2020, PT III, 2020, 12107 :788-817
[2]   Efficient Unique Ring Signature for Blockchain Privacy Protection [J].
Anh The Ta ;
Thanh Xuan Khuc ;
Tuong Ngoc Nguyen ;
Huy Quoc Le ;
Dung Hoang Duong ;
Susilo, Willy ;
Fukushima, Kazuhide ;
Kiyomoto, Shinsaku .
INFORMATION SECURITY AND PRIVACY, ACISP 2021, 2021, 13083 :391-407
[3]   Ring Signatures: Logarithmic-Size, No Setup-from Standard Assumptions [J].
Backes, Michael ;
Doettling, Nico ;
Hanzlik, Lucjan ;
Kluczniak, Kamil ;
Schneider, Jonas .
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2019, PT III, 2019, 11478 :281-311
[4]  
Barapatre P, 2013, LECT NOTES COMPUT SC, V8204, P130, DOI 10.1007/978-3-642-41224-0_10
[5]  
Boneh D, 2013, LECT NOTES COMPUT SC, V8043, P361, DOI 10.1007/978-3-642-40084-1_21
[6]   Random Oracles in a Quantum World [J].
Boneh, Dan ;
Dagdelen, Ozgur ;
Fischlin, Marc ;
Lehmann, Anja ;
Schaffner, Christian ;
Zhandry, Mark .
ADVANCES IN CRYPTOLOGY - ASIACRYPT 2011, 2011, 7073 :41-+
[7]  
Cash D, 2010, LECT NOTES COMPUT SC, V6110, P523
[8]   A Note on the Post-quantum Security of (Ring) Signatures [J].
Chatterjee, Rohit ;
Chung, Kai-Min ;
Liang, Xiao ;
Malavolta, Giulio .
PUBLIC-KEY CRYPTOGRAPHY, PKC 2022, PT II, 2022, 13178 :407-436
[9]   Compact Ring Signatures from Learning with Errors [J].
Chatterjee, Rohit ;
Garg, Sanjam ;
Hajiabadi, Mohammad ;
Khurana, Dakshita ;
Liang, Xiao ;
Malavolta, Giulio ;
Pandey, Omkant ;
Shiehian, Sina .
ADVANCES IN CRYPTOLOGY (CRYPTO 2021), PT I, 2021, 12825 :282-312
[10]   The Measure-and-Reprogram Technique 2.0: Multi-round Fiat-Shamir and More [J].
Don, Jelle ;
Fehr, Serge ;
Majenz, Christian .
ADVANCES IN CRYPTOLOGY - CRYPTO 2020, PT III, 2020, 12172 :602-631