Some Continuity Properties of Quantum Renyi Divergences

被引:3
作者
Mosonyi, Milan [1 ,2 ]
Hiai, Fumio [3 ]
机构
[1] MTA BME Lendulet Momentum Quantum Informat Theory, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, H-1111 Budapest, Hungary
[3] HUN REN Alfred Reny Inst Math, H-1053 Budapest, Hungary
关键词
Entropy; Particle measurements; Hilbert space; Atmospheric measurements; Task analysis; Quantum channels; Error probability; Quantum Renyi divergences; measured Renyi divergences; maximal Renyi divergences; relative entropy; quantum channel divergences; channel discrimination; strong converse; STRONG CONVERSE; RELATIVE ENTROPIES; CAPACITY; INEQUALITY; CHANNELS; TRACE;
D O I
10.1109/TIT.2023.3324758
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the problem of binary quantum channel discrimination with product inputs, the supremum of all type II error exponents for which the optimal type I errors go to zero is equal to the Umegaki channel relative entropy, while the infimum of all type II error exponents for which the optimal type I errors go to one is equal to the infimum of the sandwiched channel Renyi alpha -divergences over all alpha >1 . We prove the equality of these two threshold values (and therefore the strong converse property for this problem) using a minimax argument based on a newly established continuity property of the sandwiched Renyi divergences. Motivated by this, we give a detailed analysis of the continuity properties of various other quantum (channel) Renyi divergences, which may be of independent interest.
引用
收藏
页码:2674 / 2700
页数:27
相关论文
共 53 条
  • [11] Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication
    Cooney, Tom
    Mosonyi, Milan
    Wilde, Mark M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 344 (03) : 797 - 829
  • [12] Csiszar Imre, 1967, Studia Sci. Math. Hungar., V2, P229
  • [13] Csiszar Imre, 1964, Eine informationstheoretische ungleichung und ihre anwendung auf beweis der ergodizitaet von markoffschen ketten, V8, P85
  • [14] Min- and Max-Relative Entropies and a New Entanglement Monotone
    Datta, Nilanjana
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (06) : 2816 - 2826
  • [15] Bounding the Forward Classical Capacity of Bipartite Quantum Channels
    Ding, Dawei
    Khatri, Sumeet
    Quek, Yihui
    Shor, Peter W.
    Wang, Xin
    Wilde, Mark M.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (05) : 3034 - 3061
  • [16] Defining quantum divergences via convex optimization
    Fawzi, Hamza
    Fawzi, Omar
    [J]. QUANTUM, 2021, 5
  • [17] Monotonicity of a relative Renyi entropy
    Frank, Rupert L.
    Lieb, Elliott H.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [18] Using and reusing coherence to realize quantum processes
    Garcia Diaz, Maria
    Fang, Kun
    Wang, Xin
    Rosati, Matteo
    Skotiniotis, Michalis
    Calsamiglia, John
    Winter, Andreas
    [J]. QUANTUM, 2018, 2
  • [19] Correlation detection and an operational interpretation of the Renyi mutual information
    Hayashi, Masahito
    Tomamichel, Marco
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (10)
  • [20] Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding
    Hayashi, Masahito
    [J]. PHYSICAL REVIEW A, 2007, 76 (06):