Some Continuity Properties of Quantum Renyi Divergences

被引:3
作者
Mosonyi, Milan [1 ,2 ]
Hiai, Fumio [3 ]
机构
[1] MTA BME Lendulet Momentum Quantum Informat Theory, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, H-1111 Budapest, Hungary
[3] HUN REN Alfred Reny Inst Math, H-1053 Budapest, Hungary
关键词
Entropy; Particle measurements; Hilbert space; Atmospheric measurements; Task analysis; Quantum channels; Error probability; Quantum Renyi divergences; measured Renyi divergences; maximal Renyi divergences; relative entropy; quantum channel divergences; channel discrimination; strong converse; STRONG CONVERSE; RELATIVE ENTROPIES; CAPACITY; INEQUALITY; CHANNELS; TRACE;
D O I
10.1109/TIT.2023.3324758
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the problem of binary quantum channel discrimination with product inputs, the supremum of all type II error exponents for which the optimal type I errors go to zero is equal to the Umegaki channel relative entropy, while the infimum of all type II error exponents for which the optimal type I errors go to one is equal to the infimum of the sandwiched channel Renyi alpha -divergences over all alpha >1 . We prove the equality of these two threshold values (and therefore the strong converse property for this problem) using a minimax argument based on a newly established continuity property of the sandwiched Renyi divergences. Motivated by this, we give a detailed analysis of the continuity properties of various other quantum (channel) Renyi divergences, which may be of independent interest.
引用
收藏
页码:2674 / 2700
页数:27
相关论文
共 53 条
  • [1] ALI SM, 1966, J ROY STAT SOC B, V28, P131
  • [2] ON AN INEQUALITY OF LIEB AND THIRRING
    ARAKI, H
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (02) : 167 - 170
  • [3] Araki H., 1977, Publ. Res. Inst. Math. Sci, V13, P173, DOI [DOI 10.2977/PRIMS/1195190105, 10.2977/prims/1195190105]
  • [4] Asymptotic error rates in quantum hypothesis testing
    Audenaert, K. M. R.
    Nussbaum, M.
    Szkola, A.
    Verstraete, F.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) : 251 - 283
  • [5] Reciprocal Lie-Trotter formula
    Audenaert, Koenraad M. R.
    Hiai, Fumio
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (06) : 1220 - 1235
  • [6] α-z-Renyi relative entropies
    Audenaert, Koenraad M. R.
    Datta, Nilanjana
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
  • [7] Bergh B., 2021, Private communication
  • [8] Bhatia R., 1997, Matrix Analysis, DOI DOI 10.1007/978-1-4612-0653-8
  • [9] The Quantum Capacity of Channels With Arbitrarily Correlated Noise
    Buscemi, Francesco
    Datta, Nilanjana
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (03) : 1447 - 1460
  • [10] COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES
    CHOI, MD
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) : 285 - 290