The Significance of Machine Learning and Deep Learning Techniques in Cybersecurity: A Comprehensive Review

被引:0
|
作者
Mijwil M.M. [1 ]
Salem I.E. [1 ]
Ismaeel M.M. [1 ]
机构
[1] Computer Techniques Engineering Department, Baghdad College of Economic Sciences University, IRAQ, Baghdad
关键词
Artificial Intelligence; Cybersecurity; Data Science; Deep Learning; Machine Learning;
D O I
10.52866/ijcsm.2023.01.01.008
中图分类号
学科分类号
摘要
People in the modern era spend most of their lives in virtual environments that offer a range of public and private services and social platforms. Therefore, these environments need to be protected from cyber attackers that can steal data or disrupt systems. Cybersecurity refers to a collection of technical, organizational, and executive means for preventing the unauthorized use or misuse of electronic information and communication systems to ensure the continuity of their work, guarantee the confidentiality and privacy of personal data, and protect consumers from threats and intrusions. Accordingly, this article explores the cybersecurity practices that protect computer systems from attacks, hacking, and data thefts and investigates the role of artificial intelligence in this domain. This article also summarizes the most significant literature that explore the roles and effects of machine learning and deep learning techniques in cybersecurity. Results show that machine learning and deep learning techniques play significant roles in protecting computer systems from unauthorized entry and in controlling system penetration by predicting and understanding the behaviour and traffic of malicious software. © 2023 Authors. All rights reserved.
引用
收藏
页码:87 / 101
页数:14
相关论文
共 50 条
  • [41] Application of Machine Learning and Deep Learning Techniques for COVID-19 Screening Using Radiological Imaging: A Comprehensive Review
    Lasker A.
    Obaidullah S.M.
    Chakraborty C.
    Roy K.
    SN Computer Science, 4 (1)
  • [42] Android malware detection and identification frameworks by leveraging the machine and deep learning techniques: A comprehensive review
    Smmarwar, Santosh K.
    Gupta, Govind P.
    Kumar, Sanjay
    TELEMATICS AND INFORMATICS REPORTS, 2024, 14
  • [43] Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review
    Houssein, Essam H.
    Emam, Marwa M.
    Ali, Abdelmgeid A.
    Suganthan, Ponnuthurai Nagaratnam
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 167
  • [44] A Comprehensive Review on Machine Learning Techniques for Protein Family Prediction
    Idhaya, T.
    Suruliandi, A.
    Raja, S. P.
    PROTEIN JOURNAL, 2024, 43 (02): : 171 - 186
  • [45] Machine Learning Techniques for Renewable Energy Forecasting: A Comprehensive Review
    Gaamouche, Rajae
    Chinnici, Marta
    Lahby, Mohamed
    Abakarim, Youness
    Hasnaoui, Abdennebi El
    Green Energy and Technology, 2022, : 3 - 39
  • [46] A Comprehensive Review on Machine Learning Techniques for Protein Family Prediction
    T. Idhaya
    A. Suruliandi
    S. P. Raja
    The Protein Journal, 2024, 43 : 171 - 186
  • [47] REVIEW OF CROP YIELD ESTIMATION USING MACHINE LEARNING AND DEEP LEARNING TECHNIQUES
    Modi, Anitha
    Sharma, Priyanka
    Saraswat, Deepti
    Mehta, Rachana
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2022, 23 (02): : 59 - 80
  • [48] Machine learning and deep learning techniques for driver fatigue and drowsiness detection: a review
    Samy Abd El-Nabi
    Walid El-Shafai
    El-Sayed M. El-Rabaie
    Khalil F. Ramadan
    Fathi E. Abd El-Samie
    Saeed Mohsen
    Multimedia Tools and Applications, 2024, 83 : 9441 - 9477
  • [49] A systematic review on machine learning and deep learning techniques in cancer survival prediction
    Deepa, P.
    Gunavathi, C.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 174 : 62 - 71
  • [50] Machine Learning and Deep Learning Techniques for Optic Disc and Cup Segmentation - A Review
    Alawad, Mohammed
    Aljouie, Abdulrhman
    Alamri, Suhailah
    Alghamdi, Mansour
    Alabdulkader, Balsam
    Alkanhal, Norah
    Almazroa, Ahmed
    CLINICAL OPHTHALMOLOGY, 2022, 16 : 747 - 764