The Significance of Machine Learning and Deep Learning Techniques in Cybersecurity: A Comprehensive Review

被引:0
|
作者
Mijwil M.M. [1 ]
Salem I.E. [1 ]
Ismaeel M.M. [1 ]
机构
[1] Computer Techniques Engineering Department, Baghdad College of Economic Sciences University, IRAQ, Baghdad
关键词
Artificial Intelligence; Cybersecurity; Data Science; Deep Learning; Machine Learning;
D O I
10.52866/ijcsm.2023.01.01.008
中图分类号
学科分类号
摘要
People in the modern era spend most of their lives in virtual environments that offer a range of public and private services and social platforms. Therefore, these environments need to be protected from cyber attackers that can steal data or disrupt systems. Cybersecurity refers to a collection of technical, organizational, and executive means for preventing the unauthorized use or misuse of electronic information and communication systems to ensure the continuity of their work, guarantee the confidentiality and privacy of personal data, and protect consumers from threats and intrusions. Accordingly, this article explores the cybersecurity practices that protect computer systems from attacks, hacking, and data thefts and investigates the role of artificial intelligence in this domain. This article also summarizes the most significant literature that explore the roles and effects of machine learning and deep learning techniques in cybersecurity. Results show that machine learning and deep learning techniques play significant roles in protecting computer systems from unauthorized entry and in controlling system penetration by predicting and understanding the behaviour and traffic of malicious software. © 2023 Authors. All rights reserved.
引用
收藏
页码:87 / 101
页数:14
相关论文
共 50 条
  • [1] Machine Learning and Deep Learning Approaches for CyberSecurity: A Review
    Halbouni, Asmaa
    Gunawan, Teddy Surya
    Habaebi, Mohamed Hadi
    Halbouni, Murad
    Kartiwi, Mira
    Ahmad, Robiah
    IEEE ACCESS, 2022, 10 : 19572 - 19585
  • [2] Review: machine learning techniques applied to cybersecurity
    Javier Martínez Torres
    Carla Iglesias Comesaña
    Paulino J. García-Nieto
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 2823 - 2836
  • [3] Review: machine learning techniques applied to cybersecurity
    Martinez Torres, Javier
    Iglesias Comesana, Carla
    Garcia-Nieto, Paulino J.
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (10) : 2823 - 2836
  • [4] A Comprehensive Review on Crop Disease Prediction Based on Machine Learning and Deep Learning Techniques
    Patil, Manoj A.
    Manohar, M.
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 481 - 503
  • [5] A comprehensive review of COVID-19 detection with machine learning and deep learning techniques
    Das, Sreeparna
    Ayus, Ishan
    Gupta, Deepak
    HEALTH AND TECHNOLOGY, 2023, 13 (04) : 679 - 692
  • [6] Depression Detection in Social Media: A Comprehensive Review of Machine Learning and Deep Learning Techniques
    Bin Tahir, Waleed
    Khalid, Shah
    Almutairi, Sulaiman
    Abohashrh, Mohammed
    Memon, Sufyan Ali
    Khan, Jawad
    IEEE ACCESS, 2025, 13 : 12789 - 12818
  • [7] A comprehensive review of COVID-19 detection with machine learning and deep learning techniques
    Sreeparna Das
    Ishan Ayus
    Deepak Gupta
    Health and Technology, 2023, 13 : 679 - 692
  • [8] Semantic speech analysis using machine learning and deep learning techniques: a comprehensive review
    Tyagi, Suryakant
    Szenasi, Sandor
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (29) : 73427 - 73456
  • [9] A Model Proposal of Cybersecurity for the IIoT: Enhancing IIoT Cybersecurity through Machine Learning and Deep Learning Techniques
    Buja, Atdhe
    Apostolova, Marika
    Luma, Artan
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2024, 4 (03): : 2408 - 2415
  • [10] Machine Learning and Deep Learning Methods for Cybersecurity
    Xin, Yang
    Kong, Lingshuang
    Liu, Zhi
    Chen, Yuling
    Li, Yanmiao
    Zhu, Hongliang
    Gao, Mingcheng
    Hou, Haixia
    Wang, Chunhua
    IEEE ACCESS, 2018, 6 : 35365 - 35381