Bulk-Boundary Correspondence in Point-Gap Topological Phases

被引:14
作者
Nakamura, Daichi [1 ]
Bessho, Takumi [2 ]
Sato, Masatoshi [1 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Ctr Gravitat Phys & Quantum Informat, Kyoto 6068502, Japan
[2] Toshiba Co Ltd, Corp Res & Dev Ctr, Kawasaki, Japan
关键词
TIME-REVERSAL; STATES; SYMMETRIES;
D O I
10.1103/PhysRevLett.132.136401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A striking feature of non -Hermitian systems is the presence of two different types of topology. One generalizes Hermitian topological phases, and the other is intrinsic to non -Hermitian systems, which are called line -gap topology and point -gap topology, respectively. Whereas the bulk -boundary correspondence is a fundamental principle in the former topology, its role in the latter has not been clear yet. This Letter establishes the bulk -boundary correspondence in the point -gap topology in non -Hermitian systems. After revealing the requirement for point -gap topology in the open boundary conditions, we clarify that the bulk point -gap topology in open boundary conditions can be different from that in periodic boundary conditions. On the basis of real space topological invariants and the K theory, we give a complete classification of the open boundary point -gap topology with symmetry and show that the nontrivial open boundary topology results in robust and exotic surface states.
引用
收藏
页数:10
相关论文
共 134 条
[1]   A New Numerical Method for Z2 Topological Insulators with Strong Disorder [J].
Akagi, Yutaka ;
Katsura, Hosho ;
Koma, Tohru .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (12)
[2]  
[Anonymous], About us, DOI [10.1103/PhysRevLett.132.136401, DOI 10.1103/PHYSREVLETT.132.136401]
[3]   Nonreciprocal lasing in topological cavities of arbitrary geometries [J].
Bahari, Babak ;
Ndao, Abdoulaye ;
Vallini, Felipe ;
El Amili, Abdelkrim ;
Fainman, Yeshaiahu ;
Kante, Boubacar .
SCIENCE, 2017, 358 (6363) :636-639
[4]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[5]   THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM HALL-EFFECT [J].
BELLISSARD, J ;
VANELST, A ;
SCHULZBALDES, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5373-5451
[6]   Non-Hermitian Weyl physics in topological insulator ferromagnet junctions [J].
Bergholtz, Emil J. ;
Budich, Jan Carl .
PHYSICAL REVIEW RESEARCH, 2019, 1 (01)
[7]   Nielsen-Ninomiya Theorem with Bulk Topology: Duality in Floquet and Non-Hermitian Systems [J].
Bessho, Takumi ;
Sato, Masatoshi .
PHYSICAL REVIEW LETTERS, 2021, 127 (19)
[8]   Non-Hermitian Boundary Modes and Topology [J].
Borgnia, Dan S. ;
Kruchkov, Alex Jura ;
Slager, Robert-Jan .
PHYSICAL REVIEW LETTERS, 2020, 124 (05)
[9]   Non-reciprocal robotic metamaterials [J].
Brandenbourger, Martin ;
Locsin, Xander ;
Lerner, Edan ;
Coulais, Corentin .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Hidden Chern number in one-dimensional non-Hermitian chiral-symmetric systems [J].
Brzezicki, Wojciech ;
Hyart, Timo .
PHYSICAL REVIEW B, 2019, 100 (16)