Surface engineering improving selective hydrogenation of p-chloronitrobenzene over AuPt alloy/SnNb2O6 ultrathin nanosheets under visible light

被引:0
作者
Wang Z. [1 ]
Wang H. [1 ]
Shi Y. [1 ]
Liu C. [1 ]
Wu L. [1 ]
Liang S. [2 ]
机构
[1] State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian, Fuzhou
[2] National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou
基金
中国国家自然科学基金;
关键词
AuPt alloy; Halonitrobenzenes; Lewis Base sites; Photocatalytic hydrogenation; SnNb[!sub]2[!/sub]O[!sub]6[!/sub] nanosheets;
D O I
10.1016/j.ces.2022.117936
中图分类号
学科分类号
摘要
AuPt alloy/SnNb2O6 ultrathin nanosheet (AuPt/SN) as a photocatalyst is constructed for selective hydrogenation of p-chloronitrobenzene (p-CNB) under visible light irradiation. A typical catalyst (Au0.5Pt0.5/SN) exhibits a high conversion of halonitrobenzenes (99.8%) and selectivity of haloaniline (99.1%). The results of in situ ATR-IR, XPS and Raman indicate a preferential chemoselective adsorption of –NO2 that Lewis base sites (Sn2+) on the catalyst could selectively coordinate with –NO2 whereas C-Cl bond is not be bonded, improving the catalytic selectivity. Atom Pt in alloy is responsible for the formation of ·H, while Au inhabits the dissociation of C-Cl via repressing the generation of Pt-H. The photogenerated electrons can accelerate the ·H formation. ·H could be transferred to Sn2+ sites for the hydrogenation of –NO2 by hydrogen spillover. Therefore, the high performance of the catalyst can be attributed to a surface synergetic effect among Lewis base sites (Sn2+), AuPt alloy and photogenerated electrons. © 2022 Elsevier Ltd
引用
收藏
相关论文
共 57 条
[1]  
Han X.X., Chen Q., Zhou R.X., Study on the hydrogenation of p-chloronitrobenzene over carbon nanotubes supported platinum catalysts modified by Mn, Fe Co, Ni and Cu, J. Mol. Cataly. A Chem., 277, 1-2, pp. 210-214, (2007)
[2]  
Iihama S., Furukawa S., Komatsu T., Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound, ACS Catal., 6, 2, pp. 742-746, (2016)
[3]  
Lin M.-H., Zhao B., Chen Y.-W., Hydrogenation of p-Chloronitrobenzene over Mo-Modified NiCoB Nanoalloy Catalysts: Effect of Mo Content, Ind. Eng. Chem. Res., 48, 15, pp. 7037-7043, (2009)
[4]  
Jaf Z.N., Altarawneh M., Miran H.A., Almatarneh M.H., Jiang Z.-T., Dlugogorski B.Z., Catalytic hydrogenation of p-Chloronitrobenzene to p-Chloroaniline mediated by γ-Mo<sub>2</sub>N, ACS Omega, 3, 10, pp. 14380-14391, (2018)
[5]  
Wang X., Perret N., Delgado J.J., Blanco G., Chen X., Olmos C.M., Bernal S., Keane M.A., Reducible support effects in the gas phase hydrogenation of p-Chloronitrobenzene over gold, J. Phys. Chem. C, 117, 2, pp. 994-1005, (2013)
[6]  
Cardenas-Lizana F., Hao Y., Crespo-Quesada M., Yuranov I., Wang X., Keane M.A., Kiwi-Minsker L., Selective gas phase hydrogenation of p-Chloronitrobenzene over Pd Catalysts: role of the support, ACS Catal., 3, 6, pp. 1386-1396, (2013)
[7]  
Lang X., Chen X., Zhao J., Heterogeneous visible light photocatalysis for selective organic transformations, Chem. Soc. Rev., 43, 1, pp. 473-486, (2014)
[8]  
Zhou P., Yu J., Jaroniec M., All-solid-state Z-scheme photocatalytic systems, Adv. Mater., 26, 29, pp. 4920-4935, (2014)
[9]  
Cargnello M., Montini T., Polizzi S., Wieder N.L., Gorte R.J., Graziani M., Fornasiero P., Novel embedded Pd@CeO<sub>2</sub> catalysts: A way to active and stable catalysts, Dalt. Trans., 39, pp. 2122-2127, (2010)
[10]  
Kaur M., Nagaraja C.M., Template-free synthesis of Zn<sub>1–x</sub>Cd<sub>x</sub>S nanocrystals with tunable band structure for efficient water splitting and reduction of nitroaromatics in water, ACS Sustainable Chem. Eng., 5, 5, pp. 4293-4303, (2017)