Normalized solution to p-Kirchhoff-type equation in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document}

被引:0
作者
ZhiMin Ren [1 ]
YongYi Lan [1 ]
机构
[1] School of Sciences,Jimei University
关键词
-Kirchhoff equation; Normalized solution; Least action solution;
D O I
10.1007/s13324-024-00954-7
中图分类号
学科分类号
摘要
The paper is concerned with the p-Kirchhoff equation 1-a+b∫RN|∇u|pdxΔpu=f(u)-μu-V(x)up-1inH1(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\left( a+b\int _{\mathbb {R}^{N}}|\nabla u|^{p}dx\right) \Delta _{p} u=f(u)-\mu u-V(x)u^{p-1}~~~~~in~~H^{1}(\mathbb {R}^{N}), \end{aligned}$$\end{document}where a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b>0$$\end{document}. When V(x)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(x)=0$$\end{document}, p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} and N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}, we obtain that any energy ground state normalized solutions of (1) has constant sign and is radially symmetric monotone with respect to some point in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document} by using some energy estimates. When V(x)≢0,p>3+1,2p-2<p≤N<2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(x)\not \equiv 0, p>\sqrt{3}+1, \frac{2}{p-2}<p\le N<2p$$\end{document}, under an explicit smallness assumption on V with lim|x|→∞V(x)=supRNV(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{|x|\rightarrow \infty }V(x)=\sup _{\mathbb {R}^{N}}V(x)$$\end{document}, we prove the existence of energy ground state normalized solutions of (1).
引用
收藏
相关论文
共 43 条
[1]  
Ye H(2015)The existence of normalized solutions for Zeitschrift fr angewandte Mathematik und Physik 66 1483-1497
[2]  
Chen S(2021)-critical constrained problems related to Kirchhoff equations Appl. Math. Optim. 84 773-806
[3]  
Rdulescu VD(2019)Normalized solutions of nonautonomous Kirchhoff equations: sub- and super-critical cases Nonlinear Anal. 186 99-112
[4]  
Tang X(2019)The existence of constrained minimizers for a class of nonlinear Kirchhoff–Schrödinger equations with doubly critical exponents in dimension four J. Differ. Equ. 266 7101-7123
[5]  
Li Y(2022)On the concentration phenomenon of J. Differ. Equ. 334 194-215
[6]  
Hao X(2023) -subcritical constrained minimizers for a class of Kirchhoff equations with potentials J. Math. Phys. 64 081501-18
[7]  
Shi J(2022)Normalized solution to the Schrödinger equation with potential and general nonlinear term: mass super-critical case Calc. Var. Partial Differ. Equ. 61 1-237
[8]  
Li G(2014)Normalized solutions to the mass supercritical Kirchhoff-type equation with non-trapping potential Manuscr. Math. 143 221-1576
[9]  
Ye H(2023)On global minimizers for a mass constrained problem Math. Ann. 385 1545-1588
[10]  
Ding Y(2022)Stable standing waves of nonlinear Schr Math. Models Methods Appl. Sci. 32 1557-548