In silico investigation of HCV and RNA synthesis inhibitor antibiotic drugs as potential inhibitors of SARS-CoV-2 main protease (Mpro)

被引:0
|
作者
Kishore, Merusomayajula V. [1 ]
Rao, T. Siva [1 ]
Kumari, G. N. D. [2 ]
机构
[1] Andhra Univ, AU Coll Sci & Technol, Dept Chem, Visakhapatnam 530003, Andhra Pradesh, India
[2] Acharya Nagarjuna Univ, Guntur, India
关键词
SARS-CoV-2 (Mpro); COVID-19; HCV drugs; Docking study; MD simulations; DOCKING; CORONAVIRUSES;
D O I
10.1186/s43094-024-00685-3
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
BackgroundSince December 2019, a global crisis has unfolded with the emergence of a new strain of coronavirus known as SARS-CoV-2. This pandemic has afflicted hundreds of millions of people worldwide, resulting in millions of fatalities. In response to this urgent healthcare crisis, extensive efforts have been made to discover inhibitors of the COVID-19 virus. Given the structural similarities between SARS-CoV-2 and HCV, drugs approved by the FDA for treating HCV were selected and subjected to in silico testing against the SARS-CoV-2 virus, with Remdesivir used as the standard for validation. Drug repurposing and phytochemical testing have also been conducted to identify potential candidates capable of inhibiting or suppressing the infection caused by the coronavirus. The time constraints imposed by the pandemic necessitated the in silico analysis of existing drug molecules against the coronavirus. Eleven HCV drugs approved by the FDA, along with one RNA synthesis inhibitor antibiotic drug, were tested using the in silico method due to their structural similarities with HCV and the SARS-CoV-2 virus.ResultsMolecular docking and MD simulation studies were performed for all selected compounds. Binding energies, root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, radius of gyration, and molecular mechanics generalized born surface area were calculated. Based on docking and MD simulation studies all the selected compounds have shown good binding energy values with Mpro (PDB ID: 6LU7). No toxicity measurements are required for these drugs since they were previously tested prior to their approval by the FDA.ConclusionsThis study shows that FDA-approved HCV drugs can be used as for SARS-COVID-19 inhibitors.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] In Silico Identification of Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro)
    Hernandez-Serda, Manuel Alejandro
    Vazquez-Valadez, Victor H.
    Aguirre-Vidal, Pablo
    Markarian, Nathan M.
    Medina-Franco, Jose L.
    Cardenas-Granados, Luis Alfonso
    Alarcon-Lopez, Aldo Yoshio
    Martinez-Soriano, Pablo A.
    Velazquez-Sanchez, Ana Maria
    Falfan-Valencia, Rodolfo E.
    Angeles, Enrique
    Abrahamyan, Levon
    PATHOGENS, 2024, 13 (10):
  • [2] In silico approach identified benzoylguanidines as SARS-CoV-2 main protease (Mpro) potential inhibitors
    de Santiago-Silva, Kaio Maciel
    Camargo, Priscila
    da Silva Gomes, Gabriel Felix
    Sotero, Ana Paula
    Orsato, Alexandre
    Perez, Carla Cristina
    Nakazato, Gerson
    da Silva Lima, Camilo Henrique
    Bispo, Marcelle
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (16) : 7686 - 7699
  • [3] Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro)
    Sayed, Ahmed M.
    Alhadrami, Hani A.
    El-Gendy, Ahmed O.
    Shamikh, Yara, I
    Belbahri, Lassaad
    Hassan, Hossam M.
    Abdelmohsen, Usama Ramadan
    Rateb, Mostafa E.
    MICROORGANISMS, 2020, 8 (07) : 1 - 17
  • [4] Computational Investigation on Natural Quinazoline Alkaloids as Potential Inhibitors of the Main Protease (MPro) of SARS-CoV-2
    Jana, Abhisek
    Roy, Tarun
    Layek, Sarbajit
    Ghosal, Subhas
    Banerjee, Deb Ranjan
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2022, 21 (01): : 65 - 82
  • [5] Potential of NO donor furoxan as SARS-CoV-2 main protease (Mpro) inhibitors:in silicoanalysis
    Al-Sehemi, Abdullah G.
    Pannipara, Mehboobali
    Parulekar, Rishikesh S.
    Patil, Omkar
    Choudhari, Prafulla B.
    Bhatia, M. S.
    Zubaidha, P. K.
    Tamboli, Yasinalli
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (15) : 5804 - 5818
  • [6] Rutin: A Potential Antiviral for Repurposing as a SARS-CoV-2 Main Protease (Mpro) Inhibitor
    Agrawal, Pawan K.
    Agrawal, Chandan
    Blunden, Gerald
    NATURAL PRODUCT COMMUNICATIONS, 2021, 16 (04)
  • [7] In silico analysis of selected alkaloids against main protease (Mpro) of SARS-CoV-2
    Garg, Saksham
    Roy, Arpita
    CHEMICO-BIOLOGICAL INTERACTIONS, 2020, 332
  • [8] Investigation of Thiocarbamates as Potential Inhibitors of the SARS-CoV-2 Mpro
    Papaj, Katarzyna
    Spychalska, Patrycja
    Hopko, Katarzyna
    Kapica, Patryk
    Fisher, Andre
    Lill, Markus A.
    Bagrowska, Weronika
    Nowak, Jakub
    Szleper, Katarzyna
    Smiesko, Martin
    Kasprzycka, Anna
    Gora, Artur
    PHARMACEUTICALS, 2021, 14 (11)
  • [9] Protegrin-2, a potential inhibitor for targeting SARS-CoV-2 main protease Mpro
    Jan, Zainab
    Geethakumari, Anupriya M.
    Biswas, Kabir H.
    Jithesh, Puthen Veettil
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 3665 - 3671
  • [10] In silico investigation of Komaroviquinone as a potential inhibitor of SARS-CoV-2 main protease (Mpro): Molecular docking, molecular dynamics, and QM/MM approaches
    Santos, Samuel J. M.
    Valentini, Antoninho
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2024, 126