Application of artificial intelligence radiomics in the diagnosis, treatment, and prognosis of hepatocellular carcinoma

被引:29
作者
Bo Z. [1 ]
Song J. [1 ]
He Q. [1 ]
Chen B. [1 ]
Chen Z. [1 ]
Xie X. [1 ]
Shu D. [1 ]
Chen K. [1 ]
Wang Y. [2 ]
Chen G. [1 ,3 ]
机构
[1] Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
[2] Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou
[3] Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou
基金
中国国家自然科学基金;
关键词
Artificial intelligence; Hepatocellular carcinoma; Machine learning; Precision medicine; Radiomics;
D O I
10.1016/j.compbiomed.2024.108337
中图分类号
学科分类号
摘要
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with an increasing incidence and poor prognosis. In the past decade, artificial intelligence (AI) technology has undergone rapid development in the field of clinical medicine, bringing the advantages of efficient data processing and accurate model construction. Promisingly, AI-based radiomics has played an increasingly important role in the clinical decision-making of HCC patients, providing new technical guarantees for prediction, diagnosis, and prognostication. In this review, we evaluated the current landscape of AI radiomics in the management of HCC, including its diagnosis, individual treatment, and survival prognosis. Furthermore, we discussed remaining challenges and future perspectives regarding the application of AI radiomics in HCC. © 2024
引用
收藏
相关论文
共 111 条
[1]  
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F., Global cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin, 71, pp. 209-249, (2021)
[2]  
Villanueva A., Hepatocellular carcinoma, N. Engl. J. Med., 380, pp. 1450-1462, (2019)
[3]  
Singal A.G., Haaland B., Parikh N.D., Ozbay A.B., Kirshner C., Chakankar S., Porter K., Chhatwal J., Ayer T., Comparison of a multitarget blood test to ultrasound and alpha-fetoprotein for hepatocellular carcinoma surveillance: results of a network meta-analysis, Hepatol Commun, 6, pp. 2925-2936, (2022)
[4]  
McGlynn K.A., Petrick J.L., El-Serag H.B., Epidemiology of hepatocellular carcinoma, Hepatology, 73, (2021)
[5]  
Yeo Y.H., Samaan J.S., Ng W.H., Ting P.-S., Trivedi H., Vipani A., Ayoub W., Yang J.D., Liran O., Spiegel B., Kuo A., Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma, Clin. Mol. Hepatol., (2023)
[6]  
Uche-Anya E., Anyane-Yeboa A., Berzin T.M., Ghassemi M., May F.P., Artificial intelligence in gastroenterology and hepatology: how to advance clinical practice while ensuring health equity, Gut, 71, pp. 1909-1915, (2022)
[7]  
Calderaro J., Seraphin T.P., Luedde T., Simon T.G., Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma, J. Hepatol., 76, pp. 1348-1361, (2022)
[8]  
Pellat A., Barat M., Coriat R., Soyer P., Dohan A., Artificial intelligence: a review of current applications in hepatocellular carcinoma imaging, Diagn Interv Imaging, 104, pp. 24-36, (2023)
[9]  
Nam D., Chapiro J., Paradis V., Seraphin T.P., Kather J.N., Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction, JHEP Rep, 4, (2022)
[10]  
Lambin P., Leijenaar R.T.H., Deist T.M., Peerlings J., de Jong E.E.C., van Timmeren J., Sanduleanu S., Larue R.T.H.M., Even A.J.G., Jochems A., van Wijk Y., Woodruff H., van Soest J., Lustberg T., Roelofs E., van Elmpt W., Dekker A., Mottaghy F.M., Wildberger J.E., Walsh S., Radiomics: the bridge between medical imaging and personalized medicine, Nat. Rev. Clin. Oncol., 14, pp. 749-762, (2017)