The Fourier Transform on Rearrangement-Invariant Spaces

被引:0
|
作者
Kerman, Ron [1 ]
Rawat, Rama [2 ]
Singh, Rajesh K. [3 ]
机构
[1] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
[2] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, India
[3] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
关键词
Fourier transform; Weighted inequalities; Lorentz Gamma spaces; Orlicz spaces; Interpolation spaces; INEQUALITIES;
D O I
10.1007/s00041-024-10101-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let rho be a rearrangement-invariant (r.i.) norm on the set M(R-n) of Lebesgue-measurable functions on Rn such that the space L-rho(R-n) = {f is an element of M(R-n) : rho(f) < infinity} is an interpolation space between L-2(R-n) and L-infinity(R-n). The principal result of this paper asserts that given such a rho, the inequality rho(f(<^>)) <= C sigma (f) holds for any r.i. norm sigma on M(R-n) if and only if rho<overline>(U f(& lowast;)) <= C sigma(<overline>)(f(& lowast;)). Here, rho<overline> is the unique r.i. norm on M(R+), R+ = (0, infinity), satisfying rho<overline>(f(& lowast;)) = rho(f) and U f(& lowast; )(t) = integral(1/t )(0)f(& lowast;), in which f(& lowast;) is the nonincreasing rearrangement of f on R+. Further, in this case the smallest r.i. norm sigma for which rho(f(<^>)) <= C sigma (f) holds is given by sigma(f) = sigma<overline>(f(& lowast;)) = rho<overline>(U f(& lowast;)), where, necessarily, rho<overline>(integral(1/t )(0)chi((0,a))) = rho(<overline>)(min{1/t, a}) < infinity, for all a > 0. We further specialize and expand these results in the contexts of Orlicz and Lorentz Gamma spaces.
引用
收藏
页数:28
相关论文
共 50 条